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Abstract

Human-in-the-loop control for mobile robots is an important aspect of robot
operation, especially for navigation in unstructured environments or in the
case of unexpected events. However, traditional paradigms of human-in-the-
loop control have relied heavily on the human to provide precise and accurate
control inputs to the robot, or reduced the role of the human to providing
supervisory task specifications. In this thesis, we explore a new paradigm of
human-robot collaboration called human-in-the-loop planning, where the robot
can act semi-autonomously according to the human’s intention while having
the human directly inform motion planning and trajectory generation. The
proposed paradigm maximizes the strengths of the human and robot such that
the human-robot system can perform with optimal efficiency.

To this end, we first abstract away complex vehicle dynamics by way of motion
primitive teleoperation, which allows an operator to control a vehicle via input
reparameterization into trajectories. We then build upon motion primitive
teleoperation and present a method for reactive collision avoidance. We then
propose a novel method of local trajectory generation without end goal specifi-
cations for human-in-the-loop control. The method, called Biased Incremental
Action Sampling, is a sample based approach to build motion primitive trees
that optimize for non-goal based cost functions. We then introduce hierarchical
human-in-the-loop planning, which incorporates intended motions as global paths
such that generated local trajectories can follow the paths autonomously. Lastly,
we introduce continuous dynamic autonomy by generating path predictions on
semantic topological navigation maps. By incorporating environment contexts
into human-in-the-loop control, this allows us to reason about the human’s
intentions over the path space and generate predictions to assist navigation in
unstructured, constrained environments.

iii



iv



Acknowledgments

First, I’d like to thank my committee for supporting my research throughout
the years. I would like to thank my primary advisor, Nathan Michael, for your
guidance and encouragement throughout my graduate school journey and many
of the opportunities that you’ve provided me with along the way. I would also
like to thank many other advisors I’ve had during my time at CMU, Koushil
Sreenath and Jean Oh, for your guidance, support, and belief in me. It is through
iterating ideas with you and through your feedback that I learned to grow as
a researcher. To Henny Admoni, whom I have spent years discussing research
with as a pseudo-advisor, I am grateful for your insights and support, as well as
our coffee chats. I am fortunate to also have Sanjiban Choudhury and Helen
Oleynikova on my committee, whose insights and expertise have been invaluable
to developing this thesis, as well as many of the life advice that our conversations
would inevitably evolve into. There are many other faculties and admins in the
RI community whom I have received a tremendous amount of support from
over the years that I am truly grateful for. Thank you to Tommy Liu, who
encouraged me to come to CMU RI to begin with.

Most of my time at RI was spent at RISLab, and I would like to thank its
past and present members: working together made the day-to-day of graduate
school fulfilling and fun. Thank you to those who sat in the Master’s suite,
Aditya Dhawale, Arjav Desai, Cormac O’Meadhra, Jasmine Cheng, John Yao,
Kshitij Goel, Lauren Lieu, Logan Ellis, Mike Lee, Tabitha Lee, Vibhav Ganesh,
Wennie Tabib, and Yves Georgy Daoud, and its frequent visitors, Kumar Shaurya
Shankar, Alex Spitzer, Derek Mitchell, Ellen Cappo, Micah Corah. Thank you
to my first and always mentor, Vishnu Desaraju, for fielding relentless questions
from me during my first two years (and many thereafter). Thank you to Curtis
Boirum for being a steady presence for hardware and field experiments.

My time at CMU would have not been as fun without the camaraderie of many
of the RI friends that have come and went over the years. To Achal Dave,
Anirudh Vemula, Cara Bloom, Dhruv Saxena, Rosario Scalise, you guys are
some of the very first and oldest friendships from RI. I am forever grateful that
we met and became friends. Since then, we’ve only strengthened our friendships
over time. To Shaurya, who has been a mentor, a friend, a voice of reason, and
a calming presence since day one. To Aditya Dhawale, Jerry Hsiung, Mike Lee,
thank you for all the nonstop laughter and so many great memories; it is very
unfortunate that I will not be able to forget any of them. To Cherie Ho, thank
you for all the great food adventures and many productivity hacks. To Ada
Taylor, Adithya Murali, Ankit Bhatia, Christine Baek, Jaskaran Grover, Nadine
Chang, Pragna Mannam, Roberto Shu, Rogerio Bonatti, Shushman Choudhury,
Shohin Mukherjee, Stefanos Nikolaidis, Suddhu Suresh, Thomas Weng, Zhi Tan,
thank you for all the fun times and many profound conversations we’ve had.

v



Each one of those conversations have impacted me and I am deeply grateful for
our friendship. To Aditya Martowirogo and Aaron Lam, thank you for your
friendship and tremendous support from afar throughout the years. There are
many, many others whom I have interacted with over the years (Robohaus!
PSRs! RoboOrg! Conferences!) that made this experience a life changing one; I
am grateful that our paths crossed.

Lastly, thank you to Alex, who is always there to support and encourage me
with eternal optimism and silly jokes. Thank you for all the candor, honest
discussions on work, life, and everything in between. Thank you for being an
anchor for me through all the ups and downs that this journey inevitably comes
with. I have learned so much from you.

Finally, I’d like to thank my parents for their unconditional love, support,
and sacrifice. It is through them that I understand what it means to have
determination, resiliency, and perseverance.

vi



Contents

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Human-in-the-loop Navigation . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Thesis Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4.1 Challenges associated with Human Control . . . . . . . . . . . . . . 5

1.4.1.1 Complex robot dynamics . . . . . . . . . . . . . . . . . . . 5

1.4.1.2 Timescales of tasks . . . . . . . . . . . . . . . . . . . . . . . 7

1.4.1.3 Multitasking . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4.2 Challenges associated with Robot Motion Planning . . . . . . . . . . 9

1.4.2.1 Motion planning without state-space goals . . . . . . . . . 9

1.4.2.2 Legibility of Robot Motion . . . . . . . . . . . . . . . . . . 9
1.4.3 Challenges associated with Intention Representation for Human-in-

the-loop navigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4.3.1 Intention as paths . . . . . . . . . . . . . . . . . . . . . . . 10

1.4.3.2 Incorporating Known Priors for Predicting Human Intention 10

1.5 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Background 13

2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Problem Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.1 Human-in-the-loop Control of Mobile Robots . . . . . . . . . . . . . 15

2.3.1.1 Human-in-the-loop Control . . . . . . . . . . . . . . . . . . 15

2.3.1.2 Human Decision Models . . . . . . . . . . . . . . . . . . . . 16

2.3.1.3 Human Intent Representation . . . . . . . . . . . . . . . . . 17

2.3.2 Planning and Trajectory Generation . . . . . . . . . . . . . . . . . . 17

2.3.2.1 Motion Planning . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.2.2 Trajectory Representation . . . . . . . . . . . . . . . . . . . 18

2.3.2.3 Trajectory Similarity Measures . . . . . . . . . . . . . . . . 19

2.4 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Motion Primitives based HITL Control 21

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.1 Motion Primitives for Mobile Robots . . . . . . . . . . . . . . . . . . 23

vii



3.2.1.1 Control input parameterization . . . . . . . . . . . . . . . . 23

3.2.1.2 Motion Primitives for Ground Vehicles . . . . . . . . . . . . 24

3.2.1.3 Snap-Continuous Motion Primitives for Multirotor Aerial
Vehicles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.2 Adapting Motion Primitives According to an Operator Model . . . . 27

3.2.2.1 Operator Intent Model and Inference . . . . . . . . . . . . . 27

3.2.2.2 Reward Bases . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.2.3 Reward Function Estimation . . . . . . . . . . . . . . . . . 30

3.2.2.4 Adaptation Using the Operator Intent Model . . . . . . . . 31

3.3 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3.2 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 Motion Primitives with Reactive Collision Avoidance 41

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2.1 Trajectory Pruning for KD-Trees . . . . . . . . . . . . . . . . . . . . 44

4.2.2 Trajectory Pruning for GMM-based Maps . . . . . . . . . . . . . . . 45

4.2.2.1 Sampling based Collision Checking . . . . . . . . . . . . . . 46

4.2.2.2 Piecewise Affine Trajectory Approximation . . . . . . . . . 46

4.3 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3.1.1 KD-Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3.1.2 GMM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3.2.1 KDTree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3.2.2 GMM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5 Local Trajectory Generation for HITL Planning 57

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.3 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.3.1 Biased Incremental Action Sampling (BIAS) . . . . . . . . . . . . . . 62

5.3.2 Motion Primitive Trees . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.3.3 Directional Cost Formulation . . . . . . . . . . . . . . . . . . . . . . 64

5.4 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.4.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

viii



6 Hierarchical HITL Planning 71

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.2 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.2.2 User Input Processing . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.2.3 Global Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.2.4 Local Trajectory Generation . . . . . . . . . . . . . . . . . . . . . . . 77

6.2.4.1 Motion Primitive Parameterization . . . . . . . . . . . . . . 78

6.2.4.2 Multi-Step Trajectory Generation . . . . . . . . . . . . . . 78

6.2.4.3 Trajectory Selection . . . . . . . . . . . . . . . . . . . . . . 78

6.2.5 Safety Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.2.5.1 Trajectory Safety . . . . . . . . . . . . . . . . . . . . . . . . 79

6.2.5.2 Imminent Collision Monitoring . . . . . . . . . . . . . . . . 80

6.3 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.3.1 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.3.2 Random Forest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.3.3 Warehouse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7 Continuous Dynamic Autonomy via Path Prediction on Semantic Topo-
logical Maps 87

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7.2 Relevant Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

7.3 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

7.3.1 Topological map representation . . . . . . . . . . . . . . . . . . . . . 94

7.3.2 Independent given irrelevant alternatives. . . . . . . . . . . . . . . . 94

7.3.3 Boltzmann rationality decision model . . . . . . . . . . . . . . . . . . 95

7.4 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

7.4.1 Path prediction on navigation graph . . . . . . . . . . . . . . . . . . 96

7.4.2 Continuous Dynamic Autonomy . . . . . . . . . . . . . . . . . . . . 99

7.5 System Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

7.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7.6.1 Experiment design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7.6.2 User study design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7.6.3 Hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7.6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7.6.5 Operator Behavior over Time . . . . . . . . . . . . . . . . . . . . . . 105

7.6.6 Odometry Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7.6.7 Trends in Operator Engagement . . . . . . . . . . . . . . . . . . . . 109

7.6.8 Preference and Qualitative Observations . . . . . . . . . . . . . . . . 109

7.7 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . 111

ix



8 Conclusion 113
8.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

8.1.1 Motion Primitives based HITL Control . . . . . . . . . . . . . . . . . 114
8.1.2 Local trajectory generation and Hierarchical Motion Planning for HITL114
8.1.3 Incorporating Contextual Information for Continuous Dynamic Au-

tonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
8.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
8.3 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

x



List of Figures

1.1 Motivating scenarios for dynamic autonomy . . . . . . . . . . . . . . . . . . 2

1.2 Simplified representation of a search/inspection navigation task . . . . . . . 2

1.3 Illustration of the Human-in-the-loop problem . . . . . . . . . . . . . . . . . 3

1.4 Illustration of Multitasking Requirements on HITL Control . . . . . . . . . 5

1.5 MAV dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.6 Traditional RC control for Multirotor Aerial Vehicles (MAV) . . . . . . . . . 6

1.7 Visual comparison of trajectories with traditional RC vs. motion primitives 7

1.8 Illustrative timescale between system frequency vs. human reaction . . . . . 8

1.9 Illustration of Challenges Associated with HITL Motion Generation . . . . . 9

1.10 Legible vs. non-legible motion approaching an obstacle . . . . . . . . . . . . 10

1.11 Proposed HITL planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1 Range of HITL control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1 2D Motion primitive libraries . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 3D Motion primitive library . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Continuity of motion primitive libraries . . . . . . . . . . . . . . . . . . . . 26

3.4 Adaptive motion primitive libraries . . . . . . . . . . . . . . . . . . . . . . . 28

3.5 System diagram for adaptive motion primitives . . . . . . . . . . . . . . . . 29

3.6 Distribution over motion primitives . . . . . . . . . . . . . . . . . . . . . . . 31

3.7 Hardware platforms for adaptive motion primitive evaluation . . . . . . . . 33

3.8 Racetrack odometry results . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.9 Racetrack results: Steering entropy and input frequency . . . . . . . . . . . 36

3.10 Lemniscate results: Steering entropy and input frequency . . . . . . . . . . 36

3.11 Lemniscate odometry results . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.12 Input distribution vs. actual joystick input for the lemniscate motion . . . . 38

3.13 Adaptive motion primitive library size over time . . . . . . . . . . . . . . . . 39

4.1 Hardware in-flight images of motion-primitives based collision avoidance . . 43

4.2 Software in-flight images of motion-primitives based collision avoidance . . . 43

4.3 Example natural behaviors as a result of reactive collision avoidance . . . . 44

4.4 Illustrative collision avoidance with a Gaussian Mixture Model map . . . . . 45

4.5 Hardware MAV and snapshots of outdoor experiments . . . . . . . . . . . . 50

4.6 hardware in-flight snapshot of collision avoidance . . . . . . . . . . . . . . . 50

4.7 Hardware experiment results for KD Tree collision avoidance . . . . . . . . 51

4.8 Simulated cluttered environment . . . . . . . . . . . . . . . . . . . . . . . . 53

xi



4.9 Qualitative results of free space during flight . . . . . . . . . . . . . . . . . . 54
4.10 Experiment results for GMM collision avoidance . . . . . . . . . . . . . . . . 55

5.1 Simulation in-flight images of MAV teleoperated with motion-primitive trees 58
5.2 Illustrative example of two trajectories that optimize an operator specified

motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.3 In-flight capture of an obstacle avoidance maneuver . . . . . . . . . . . . . . 60
5.4 Illustration of the tree generation process . . . . . . . . . . . . . . . . . . . 61
5.5 Motion primitive trees according to user input that avoid obstacles . . . . . 63
5.6 Qualitative effects of behavioral cost functions . . . . . . . . . . . . . . . . . 65
5.7 Qualitative results in various density random forest environments . . . . . . 67

6.1 Illustrative example of the hierarchical framework . . . . . . . . . . . . . . . 72
6.2 In-flight captures of the sequential hierarchical framework in action in the

random forest environment . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.3 In-flight captures of the sequential hierarchical framework in action in the

warehouse environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.4 Illustration of global path for HITL . . . . . . . . . . . . . . . . . . . . . . . 75
6.5 System diagram of hierarchical teleoperation . . . . . . . . . . . . . . . . . . 76
6.6 Logic flow diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.7 Illustration of trajectory selection . . . . . . . . . . . . . . . . . . . . . . . . 79
6.8 Illustration of imminent collision monitoring . . . . . . . . . . . . . . . . . . 80
6.9 Imminent collision monitoring results . . . . . . . . . . . . . . . . . . . . . . 82
6.10 In-flight sequence of the passage through the collapsed shelf . . . . . . . . . 82
6.11 Number of operator inputs as a function of environment density . . . . . . . 84

7.1 Discrete vs. Continuous Dynamic Autonomy . . . . . . . . . . . . . . . . . 89
7.2 Motivating scenarios for dynamic autonomy . . . . . . . . . . . . . . . . . . 89
7.4 Graphical comparison of various navigation map representations . . . . . . . 92
7.5 Graphical illustration of semantically topological navigation graph requirements. 94
7.6 Illustration of the IIA assumption . . . . . . . . . . . . . . . . . . . . . . . . 95
7.7 Extracting a path tree from a topological graph . . . . . . . . . . . . . . . . 97
7.8 Illustration of decreasing weight factor for path evaluation . . . . . . . . . . 98
7.9 Illustration of prediction diverging with human preference . . . . . . . . . . 100
7.10 Illustration of continuous dynamic autonomy transition . . . . . . . . . . . . 101
7.11 System Diagram for Dynamic Autonomy . . . . . . . . . . . . . . . . . . . . 102
7.12 Experiment setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
7.13 Semantically topological navigation graph for the warehouse. . . . . . . . . 103
7.15 Results: Selected operator behavior over time . . . . . . . . . . . . . . . . . 106
7.16 Results: Odometry of select participant trials . . . . . . . . . . . . . . . . . 107
7.17 Results: Odometry length, broken down by modes . . . . . . . . . . . . . . 108
7.18 Results: Participant survey responses . . . . . . . . . . . . . . . . . . . . . . 110

xii



List of Tables

1.1 Challenges associated with the human-in-the-loop (HITL) problem. . . . . . 5
1.2 Table of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1 LWPR parameters for estimating the reward function for both scenarios . . 33
3.2 Motion primitive library parameters used in the experiments. . . . . . . . . 33

4.1 Experiment descriptions and parameters. T is the duration of the motion
primitive, vmax

x is the maximum desired speed, ωmax is the maximum yaw
rate, and r is the collision radius. ·∗ denotes motion primitive duration
increased adaptively as a linear function of the desired velocity change. . . . 49

4.2 Execution time (ms) and std. dev. per iteration for safe teleoperation using
a local map containing 10000 points. . . . . . . . . . . . . . . . . . . . . . . 52

4.3 CPU usage (%, out of a total available 600%) and std. dev. on a 6 core
NVIDIA TX2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.1 Trajectory parameters: The 2D action space includes ω and T , and the 3D
action space includes ω, T , and vz. . . . . . . . . . . . . . . . . . . . . . . . 66

5.2 Cost parameters for random forest navigation . . . . . . . . . . . . . . . . . 66
5.3 Timing results per node (data from 2.4M node evaluations with the densest

random forest environment) . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.4 Timing and size data per tree (data from 100 trees generated in the densest

random forest environment) . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.5 Comparison of the different density enviroments . . . . . . . . . . . . . . . . 69

6.1 Results for three different density random forest environments . . . . . . . 83
6.2 Results for the warehouse environment . . . . . . . . . . . . . . . . . . . . . 83

7.1 Navigation Mode Analysis for Pilot Warehouse User Study . . . . . . . . . . 108
7.2 Input analysis for warehouse . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
7.3 User survey responses comparing the three methods . . . . . . . . . . . . . 110

8.1 Key Insights on Human-in-the-loop Navigation . . . . . . . . . . . . . . . . 116

xiii



xiv



Acronyms

ATV all-terrain vehicle. 2

AVM Average Velocity Model. 87

CVM Constant Velocity Model. 87

DRD decision region determination. 92

DTW Dynamic Time Warping. 19

ESDF Euclidean Signed Distance Field. 17

GMM Gaussian mixture model. 11

GVD generalized voronoi diagram. 91, 92

HITL human-in-the-loop. xiii, 3–5, 9–12, 41, 90, 96, 100, 102, 113

IIA independent given irrelevant alternatives. 95

MAV multirotor aerial vehicle. 2, 5, 7, 11, 19, 25, 88, 114

MaxEnt IOC Maximum entropy inverse optimal control. 92

MDP Markov Decision Process. 92

MPL motion primitive library. 23

PRM Probabilistic Roadmap. 18, 91

PWA piecewise affine. 46

RRT rapidly-exploring random trees. 91

STG Sparse Topological Graph. 92

xv



xvi



Chapter

1

Introduction

While autonomous mobile robots have exploded in consumer and industrial applications

in recent years such as exploration, autonomous driving, delivery robots, and entertainment,

the scope of fully autonomous operation has been limited to structured environments with

well-defined task objectives. Advances of mobile robotics in unstructured scenarios for

arbitrary tasks are still reliant on human control due to several challenges. These challenges

include encoding task objectives, interpreting scene into semantics, and making critical

operating decisions for edge cases.

Humans on the other hand, can more efficiently reason about arbitrary scenes. This

allows the human to identify goals, process the environment context and recognize its

effects and implications faster and more accurately than autonomous platforms. The human

intuition is invaluable and should be leveraged to improve robot operation in environments

where full robot autonomy cannot be relied upon. For many navigation tasks, human-in-

the-loop has been a key paradigm for robot control. However, the traditional paradigm has

its host of inefficiencies which leads to a surge in interest for fully autonomous operations.

In this thesis, we return to the human-in-the-loop control problem, and look to increase the

efficiency of the human-robot system in navigation. This thesis focuses on the question of

enabling seamless human-in-the-loop navigation with semi-autonomy, such that arbitrary

navigation tasks can be effortlessly completed with both the human and the robot’s strengths

maximized.
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Chapter 1. Introduction

1.1 Motivation

To begin this thesis, consider the two scenarios in Fig. 1.1. The first task is to perform

search and rescue in a wooded area with rough terrain using an all-terrain vehicle (ATV) as

shown in Fig. 1.1. The second task is a search and inspect operation in a potentially hazardous

warehouse using a multirotor aerial vehicle (MAV) to identify potentially dangerous objects

of interest.

Figure 1.1: Motivating scenarios for dynamic autonomy. (Left) a warehouse with unstructured obstacles.
(Right) Satellite images of a rough terrain with traversability unknown.

Both of these scenarios follow the same task structure: Given an unstructured envi-

ronment, the primary task is to navigate through the environment, and return to some

arbitrary goal location. While the vehicle navigates, the operator must complete a secondary

objective; for example, to look for an object of interest or to inspect a location of interest.

The toy problem is illustrated in Fig 1.2.

Object of interestObstaclesStart End

Figure 1.2: Simplified representation of a search/inspection navigation task. Given an unstructured
environment, the task is to navigate through the environment while searching for an object of interest, and
return to the starting location.

The task structure is highlighted by a few characteristics:

• The end goal configuration is irrelevant; often, it could be the same as the starting

location.

2



Chapter 1. Introduction

• The choice of path is dependent on the underlying task objective.

Applications that follow this task structure are good examples of when to involve human-

in-the-loop. Autonomous navigation algorithms that can directly accomplish the underlying

objective are usually not readily available. Humans are recognizably superior as intuitive

path planners given the semantics of the scene.

1.2 Human-in-the-loop Navigation

The HITL control problem can be simplified into a feedback control loop: The human

observes the robot motion and provides inputs that will steer the robot to achieve the

intended motion. Fig. 1.3 illustrates this continuous feedback control process.

Human control Robot Motion

Intention

Figure 1.3: Illustration of the human-in-the-loop control problem: The human issues a command via an
interface to the robot based on what they envision the motion that the robot should undertake. The robot
executes motion based on the provided input. Based on the observed outcome, the human provides a new
input, and the cycle repeats until the human’s intention is achieved.

Such a feedback control problem involves two agents: The human pilot, and the robot.

The common objective for both agents is to follow the intention of the human. In order to

achieve that, the human needs to communicate to the robot via the input interface. The

first key question is, How does the human interface with the robot?

Once an input is received from the human, the robot needs to interpret the input and

translate it into motion. The robot needs to execute the best possible motion that it believes

the human wishes to achieve. Therefore, the second key question becomes, How should the

robot use the human input to generate motion?

For the most efficient human-robot system, the objective needs to be clearly understood

by the robot, such that the robot can execute the motion that the human imagines.

Possibilities of the human’s intention is vast given the navigation context. Although task

information may not be immediately or easily communicated to the robot a priori, the

human’s actions are clearly observable. The third question then becomes, How should

intention be represented and predicted for navigation tasks?
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1.3 Thesis Objectives

The roles of the human and robot is disproportionate in traditional HITL navigation:

The human is responsible for most of the autonomy of the robot, including planning, safety,

dynamic feasibility, and disturbance rejection. The human then provides a system-level

control input to the robot, i.e., an input that corresponds to the control dynamics of the

system. The robot will simply set the reference for its low-level controllers to the provided

control input.

The ideal human-robot system should play to the strengths of both: While humans are

recognizably superior as path planners, they are less capable at computing precise control

inputs while focusing on multiple objectives such as planning, safety, and responding to

unanticipated scene changes.

Autonomy in robotics can compensate for these weaknesses. When humans are in control

of the robot, “the intelligence of the system being controlled determines how involved the

human becomes in the process.”[1]. In other words, the maximum level of autonomy of the

robot determines the minimum level of required control from the human. This gives us a

key insight: If we can shift the control responsibility from the human to the robot wherever

possible, then the human-robot system becomes more efficient. However, this comes with a

caveat: the autonomy assumed by the robot must be aligned with the expectation of the

human.

The thesis statement is as follows.

The goal of this thesis is to enable seamless human-in-the-loop control of a mobile robot,
such that the robot navigates in unstructured environments according to the human’s

intention.

To achieve this goal, this thesis addresses the three areas of HITL introduced previously

in detail. This thesis proposes to increase the efficiency of the human-robot navigation

system via increasing the autonomy of the robot in general robot navigation, motivated by

the examples in unstructured scenarios. In achieving this objective, we look at some of the

deficiencies in current HITL paradigms, and identify methodologies that help alleviate these

inefficiencies.

The human-in-the-loop navigation should satisfy the following three criteria:

1. Intuitive: The operator’s inputs should result in expected motions of the robot.

2. Safe: The robot should remain safe in unstructured environments in the presence of

unanticipated obstacles.

3. Efficient: The robot should navigate according to the human’s intended path without

requiring precise human instructions.
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1.4 Challenges

We begin addressing the thesis problem by inspecting three areas of challenges corre-

sponding to HITL navigation as outlined in Section 1.2.

Table 1.1: Challenges associated with the HITL problem.

Human control Robot motion Intention

◮ Complex robot dynamics
◮ Timescales
◮ Multitasking

◮ Plan in the absence of goals
◮ Legibility of robot motion

◮ Intention representation
◮ Incorporating environment priors

1.4.1 Challenges associated with Human Control

Challenge 1: Reduce complexities for the human operator to control the robot.

Planning Obstacle Avoidance
Disturbance  
Rejection

Dynamics 
I/O Mapping

Decreasing Timescale of Required Reactivity

Figure 1.4: Illustration of multitasking requirements on human-in-the-loop control: Multiple objectives on
various timescales needs to be taken into consideration of computing a single control input that is provided
to the robot.

1.4.1.1 Complex robot dynamics

It is difficult for a human operator to control the robot precisely given the complex

dynamics of the system with little to no prior experience. Vehicles such as MAV’s have high

degrees-of-freedom, which is controlled by giving inputs as angular velocities, as illustrated

in Fig. 1.5. The system dynamics that maps these inputs to the output state space is

unintuitive to the human.

For any dynamical system, the human learns the system dynamics by exploring the

available actions and observing feedback of the change in the robot state. This process allows

the operator to implicitly learn the mapping from the input to the resulting motions. By
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Roll ϕ Pitch θ Yaw ψ

zb

xb

yb

F

Thrust F

Figure 1.5: Multirotor Aerial Vehicle (MAV) Dynamics.

doing so, the operator is implicitly learning an approximate model of the robot’s dynamics,

which allows the operator to generate an appropriate input given a desired output. The

learning time for any operator is correlated with the complexity of the system, thereby

limiting teleoperation to skilled operators. The complexity of the system dynamics is a

barrier to allowing the average human to be able to control a system with ease.

Attitude Control

Motor 

Controller 

Attitude  

Controller

Roll ϕ

Pitch θ

Yaw ψ

Thrust F

(a)

Attitude Control

Motor 

Controller 

Attitude  

Controller

Roll rate 
·

ϕ

Pitch rate 
·
θ

Yaw rate ·ψ

Thrust F

(b)

Figure 1.6: Traditional RC control for Multirotor Aerial Vehicles (MAV) with (a) orientation and (b) angular
velocities.

An example is shown in Fig. 1.7, where a set of naive operators was asked to complete a

navigation task that requires weaving through a series of pillars without given a specific

trajectory to follow. It is clear that many naive operators fail to complete the navigation

task by providing low-level system commands (RC inputs) (Fig. 1.7a). With an intuitive

teleoperation method (Fig. 1.7b), it is clear that without specifying the exact trajectory for

the task, the naive operators are able to control the vehicle with ease and with resulting

trajectories that look very similar.
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(a) Resulting trajectories using traditional RC teleoperation.

(b) Resulting trajectories using motion-primitives based teleoperation, introduced in Chapter 3.

Figure 1.7: A comparison of trajectories of teleoperating a MAV using traditional RC and a more intuitive,
motion primitives method in a pillar navigation task with naive operators. The RC method proves to be
unintuitive and results in suboptimal performance, whereas the more intuitive method allows the operator
to complete the task easily regardless of their skill level.

1.4.1.2 Timescales of tasks

Humans, on average, have reaction times1 between 200-250 ms, and for elite trained

vehicle operators, 140-200 ms [2]. This corresponds to an average reaction time of 3-7

Hz. Local replanning typically happens around 1 Hz and up to 10 Hz depending on the

environment density and trajectory horizon [3], with global plans generated at a much slower

rate. However, control inputs are required at a much faster rate: for a multirotor vehicle,

control frequency can range around 100 Hz to 500 Hz, depending on the level of control that

the operator is responsible for. This timescale is illustrated in Fig. 1.8. Lastly, visual scene

changes at a rate that is dependent on the vehicle’s speed and the environment structure; in

constrained environments, this may result in unanticipated obstacles appearing at faster

rates than the human can process. While the human is capable of planning and handling

environment changes that happen at a lower rate, computing precise control inputs given

vehicle system rates and responding to unpredictable external disturbances require fast

response rates. The slow response time of the human is ultimately inefficient in handling

these objectives.

1.4.1.3 Multitasking

The human operator is overloaded with multitasking between planning, reacting to

unexpected scene changes, estimating disturbances and computing the appropriate control

inputs (Fig. 1.4). This is highly inefficient for the human operator. While humans are

recognizably superior as path planners, they are less capable at computing precise control

inputs while focusing on multiple objectives.

1A visual-based reaction test can be found at https://humanbenchmark.com/tests/reactiontime, with
the median being 215 ms over 81 million test points.
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Motor  
Control

1000 Hz

Position 
Control

100 Hz10 Hz

Human Reaction 

Rate

Local 
Planning 

3-7 Hz1 Hz

Attitude 
Control

500 Hz

Global  
planning

< 1 Hz

Dense environments,  
more reactive

Sparse environments, 
more deliberate

Figure 1.8: Timescale between system frequency vs. human reaction. Depending on the level of control that
the human-robot system interfaces at, the human cannot react fast enough to provide precise inputs at a
rate that is comparable to an autonomous control system. However, human operator can accommodate
lower rate tasks such as planning and semantic understanding, given that a scene does not visually change
faster than the human’s processing time.

Studies have shown that by adding one additional task to a primary task, the human’s

processing bandwidth on the primary task reduces by approximately 37% even if the human

does not engage in the secondary task [4]. Simply paying attention to a secondary focus

leads to a deterioration in the primary task performance. Further, satisfying objectives with

various time scales causes physiological stress and fatigue [2, 5], leading the operator to

provide erroneous control inputs that could introduce instability in the system. Therefore,

to increase the efficiency of the human-robot system, the robot should enable the operator

to focus solely on the navigation task. This requires shifting the responsibilities of safety,

dynamic feasibility, reactivity to environment to the robot.
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1.4.2 Challenges associated with Robot Motion Planning

Challenge 2: Plan dynamically feasible and collision-free trajectories that follow the

human operator’s desired path.

Planning in the absence of a goalInterpreting human inputs to motion 

?

Motion is understandable to the human

?

Figure 1.9: Illustration of challenges associated with HITL motion generation

1.4.2.1 Motion planning without state-space goals

The general problem of motion planning in robotics has traditionally referred to the

problem of computing collision-free paths from a start to a final goal configuration. For

human-in-the-loop navigation, it is not often that a goal configuration can be clearly defined

with respect to the task. The example tasks described in Sect 1.1 illustrates this point: For

many tasks, the task objective is defined by the navigation path rather than the start and

end goal configuration, which in many cases, could be the same.

Instead of planning from a starting configuration to a goal configuration, human-in-the-

loop requires generating plans that follow desired motions. Much of modern literature on

motion planning focuses on planning to a goal. This thesis aims to address planning and

trajectory generation that optimize for motions in the absence of state-space goals.

1.4.2.2 Legibility of Robot Motion

An additional constraint that must be considered for HITL control is the legibility of

the robot motion. Legible motion [6] is defined as motion that expresses its intent without

obfuscation. The motion that the robot performs needs to be clearly understandable to the

operator, such that the human can assess the trajectory of the robot and provide feedback.

An example is shown in Fig. 1.10. As a robot approaches an obstacle, it must remain

collision-free. Although both trajectories are collision-free, the trajectory on the right does

not express it in a way that is clearly understandable to the human.

This constraint, while perhaps not a significant concern for autonomous operation, is a

key concern especially for mobile robot teleoperation. When direct communication of intent

is unavailable or infeasible, providing passive feedback in the form of motion is an implicit

way to communicate understanding of intention.

9
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1.4.3 Challenges associated with Intention Representation for

Human-in-the-loop navigation

Challenge 3: Represent and predict the operator’s intention in navigation tasks.

1.4.3.1 Intention as paths

The HITL feedback control problem involves two agents: The human operator, and the

robot. The common task objective for both agents is the intention of the human, which is

non-observable to the robot.

In a human-robot collaboration scenario, intention can be represented in various ways.

Notably, the intention can be represented either as a goal [7–9] in the state space (e.g., a

door, an address, a specific object), or they can be represented as a path [10–12] (e.g., a

sequence of streets to take to reach an address). However, the operator’s intention can also

be represented at a lower level, either as a specific motion [13, 14] (e.g., a left turn, a right

turn or perform an in-place yaw), or as a system set-point [15, 16] (e.g., drive a vehicle at a

fixed velocity). These various levels of intention are dependent on the task objective and

interface design.

This thesis primarily focuses on intention representation for navigation tasks as paths.

The operator typically has a specific path that the vehicle should take. Representing

intentions as goals may overlook some of the granular details of human preference, such as

trajectory behavioral characteristics and shape profile.

1.4.3.2 Incorporating Known Priors for Predicting Human Intention

Contextual information provides rich information regarding the human’s intention. While

task descriptions and/or goals communicated to the robot a priori can be a definitive model

of human intention, contextual cues such as environment models can provide expository

semantics. Understanding such semantics via inference allows the robot to understand the

operator’s intention, which is non-observable.

Legible motion Non-legible motion

Figure 1.10: Legible vs. non-legible motion of a quadrotor approaching an obstacle. The legible motion
clearly indicates a desire to evade the obstacle by going right. The non-legible motion approaches the
obstacle straight on, and it is not immediately clear during the approach that the vehicle will go left, right,
stop or crash into the obstacle.
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1.5 Thesis Outline

To address these challenges, this thesis explores human-in-the-loop planning (Fig. 1.11).

The idea of human-in-the-loop planning is as follows: Instead of using the operator’s input

directly to control the robot, the input is used to inform the generation of a trajectory. This

thesis presents a variety of work related to human-in-the-loop planning, with increasing

planning horizon and autonomy.

Cascaded Position Control

Motor 
Controller 

Attitude  
Controller

Roll ,  ϕ
·

ϕ

Pitch , θ
·
θ

Yaw , ψ ·ψ

Thrust F

Position  
Controller

Input Trajectory
Human-in-the-

loop Planning 

(This Thesis)
Map

Depth 
Camera

Figure 1.11: Proposed HITL framework for a MAV. Compared to traditional HITL frameworks such as
Fig. 1.6, this thesis explores human-in-the-loop planning, such that the operator’s input is used to generate
a trajectory, which is then used to generate references for the vehicle controller.

In Chapter 2, we define the domain of human-in-the-loop control and formalize the

teleoperation problem, and provide mathematical preliminaries required in order to

contextualize subsequent chapters. Additionally, related works that pertain to various

aspects of our problem domain are presented and discussed.

In Chapter 3, we begin addressing the thesis problem by moving from providing control-

level inputs to specifying state-space motions by way of motion primitives. By doing

so, we abstract away complex dynamics. Sections of this chapter first appear in

[17–19].

In Chapter 4, we build upon the previous chapter and discuss reactive autonomous

collision avoidance based on motion primitives. We present fast collision checking with

respect to two types of map representation: a KD-Tree Voxel based representation,

and a Gaussian mixture model (GMM) based map representation. Sections of this

chapter first appear in [19, 20].

In Chapter 5, we move from one-step reparameterization into local trajectory generation,

which extends the planning horizon by generating trajectories that actively avoid

obstacles. To do so, we propose generating motion primitive trees computationally

efficiently via an Biased Incremental Action Sampling (BIAS). The contents of this

chapter first appear in [21].

In Chapter 6, we introduce hierarchical HITL, which incorporates both global paths and

local trajectories. The proposed framework incorporates the operator’s intended path

into the planning stack in addition to generating locally dynamically feasible and

11
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collision-free trajectories. The contents of this chapter first appear in [22].

In Chapter 7, we introduce continuous dynamic autonomy given a compact representation

of a constrained environment. The environment context is incorporated into the

HITL framework as a semantically topological navigation graph. Path predictions are

generated on the navigation graph, which is used to assist navigation via continuous

dynamic autonomy.

We conclude the thesis in Chapter 8 with some of the key insights obtained throughout

this work, and lay out potential future directions. A summary of the presented work is

shown in Table 1.2.

Table 1.2: Table of Contributions

Human control Ch. 3: Motion Primitives for HITL navigation
Ch. 4: Reactive collision avoidance

Robot motion Ch. 5: Local trajectory generation for HITL navigation
Ch. 6: Hierarchical HITL navigation

Intention Ch. 7: Continuous dynamic autonomy
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Chapter

2

Background

2.1 Preliminaries

Unless otherwise specified, we will use the following notation and definitions below:

Operator input. The input from the operator is are received as a continuous stream of

real values coming from a continuous input device. Each input or action from the operator

is represented by a = {a1, ...aq}, for q input dimensions. To identify unique inputs from the

continuous stream, a novel/unique/new input from the operator is defined as an input that

leads a zero-order hold over at least 100ms. Unless otherwise noted, a will identify a unique

input from the operator.

Each of the input dimension space Ai is assumed to be a convex closed set. The action

space is given by A = A1 × ...×Aq.

For the multirotor, the input will be a = {v, ω, vz}, where v ∈ Vx is the forward linear

velocity, ω ∈ Ω is the yaw velocity (or the angular velocity about yaw), and vz ∈ Vz is the

velocity along the world-aligned z-axis. The action space is consequently A = Vx ×Ω × Vz.

State. The planning state or state is given by x = {x, y, z, θ}, where x, y, z is a position

in Euclidean space, and θ is the heading (or yaw) of the vehicle aligned with respect to the

world-aligned z-axis. The state at a given time is denote by xt. The state space is given by

X = R
3 × [−π, π]. The state space is safe if Xsafe = X\O, where O is the obstacle space.

The time derivatives with respect to the state are given by ẋ, ẍ,
...
x , x(4), representing

the velocity, acceleration, jerk and snap respectively.
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Note that the state is not to be confused with the control state, which for a multirotor

would include the Euclidean position, the orientation using Euler angles, and the associated

angular velocities: xcontrol = {x, y, z, φ, θ, ψ, ẋ, ẏ, ż, p, q, r}.

Path. A path is a sequence of waypoint states that specifies the vehicle’s position:

ρ = {x1, ...,xn}, where xi ∈ X . The path is safe if ∀ xi, i ∈ {1, ..., n},xi ∈ Xsafe.

Trajectory. A trajectory is a time-parameterized function ξ(t), defined over a time

interval t ∈ [0, T ] that maps a given time t to a state1 x, i.e., ξ : [0, T ] → X , where the

duration T ∈ [0,∞). A trajectory is safe if ξsafe : [0, T ]→ Xsafe. A trajectory space is the

span of the trajectory space ξ ∈ Ξ. The trajectory space is safe if every trajectory in the

trajectory space is a safe trajectory.

Intention Model. The operator model Φ outputs a trajectory given the operator’s

input a and environment variables M: Φ(a,M) = ξ.

2.2 Problem Setup

Recall an earlier insight, the maximum level of intelligence of the robot determines

the minimum level of required control from the human. This implies that by sequentially

increasing the intelligence of the robot, operator engagement can be reduced accordingly.

We propose to address the thesis problem by using trajectory-based teleoperation. The

focus is to generate trajectories that allow the operator to focus solely on the navigation

task by increasing the autonomy of the robot.

The thesis problem is as follows:

Trajectory-based Teleoperation Problem. Given an operator input a at any time

t and an environment representation M, ensure that the vehicle’s trajectory ξ satisfies the

following:

min s(ξ, ξ̂) (2.1)

s.t. ξ ∈ Ξsafe (2.2)

ξ̂ = Φ(a0,...,t,M) (2.3)

where ξ̂ is a trajectory obtained from an intention model Φ(a,M) and s(ξ, ξ̂) is a similarity

metric evaluated between trajectories ξ and ξ̂.

This document breaks down Problem (2.1) to be addressed in parts. First, the completed

work demonstrates an appropriate trajectory representation such that teleoperation can

be performed without operator’s explicit expertise, resulting in expected motions that are

natural to the operator. Second, we ensure that the trajectories generated satisfy collision

avoidance as the operator teleoperates. Then, we demonstrate trajectory generation in

1If the trajectory function is continuously differentiable, then instead mapping to the state x, the
trajectory function maps a given time t to the control state xcontrol, i.e., ξ : [0, T ] → Xcontrol.
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unstructured environments under a known intended trajectory or intention model. Lastly,

we infer the human’s intention in the space of trajectories and utilize it to guide navigation.

These works aim to increase the efficiency of the human-robot navigation. Throughout

this thesis, we define the efficiency of the human-robot system measured in terms of human

operator engagement2– that is, if the human interacts with the robot frequently to provide

inputs. We hypothesize that, if the system is performing as expected, the human does not

need to intervene to provide corrective inputs.

2.3 Related Works

The related works will cover human-in-the-loop control and assistance, human intention

representation, motion planning and trajectory generation, as well as trajectory similarity

measures.

2.3.1 Human-in-the-loop Control of Mobile Robots

Full Autonomy 
Zero human 
intervention;  
Robot is 
autonomous 

Supervisory  
Human interjects 
only when needed;  
Robot is 
autonomous

Goal/Task 
specification 
Human specifies goal; 
robot plans path to 
reach goal

Shared control 
Human specifies input;  
Robot predicts the intent of 
the human and executes the 
predicted plan

Trajectory 
Following  
Human specifies path; 
Robot follows given 
path

Direct control 
Human specifies 
control inputs to the 
dynamics;  
Robot follows given 
set points

Human Robot Collaboration

Figure 2.1: A scale of human-in-the-loop control and assistance for mobile robots.

2.3.1.1 Human-in-the-loop Control

One of the earliest works on human-robot interaction describes the type of interactions

between human and robots as supervisory control, where the supervisor gives directives,

which are in turn understood and translated into detailed actions by the subordinate [1].

These earlier ideas interpret supervisory control to include the span of autonomy between

the extremes of full direct control and fully autonomous control. In recent literature, the

involvement between human and robots has evolved from supervisory to collaborative,

leading to the human and robot sharing responsibilities.

In Fig. 2.1 we provide an evolved scale of human-in-the-loop control [23]. We focus our

discussion on teleoperation and mobile robots, and describe related literature on various

subdomains outlined in this scale.

Direct control. In traditional multirotor UAV teleoperation, the operator typically

issues low-level inputs to the vehicle according to the vehicle dynamics, requiring experience

2Operator engagement is defined to be the number of times that an operator has to provide distinctive
inputs in order for the vehicle to move as the operator intended.
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in teleoperation to maintain stability [24]. Haptic feedback informs and prevents collisions

at the interface level [25–27]. Low-level control inputs from the operator are augmented in

order to avoid the immediate obstacles [24, 28].

Trajectory specification. The operator can also directly provide a trajectory shape

for a vehicle to follow [29]. In this form of control, while high level, the operator is responsible

for concatenating trajectories in order to achieve the task while the onboard automation is

responsible for following the trajectory and guaranteeing stability.

Shared control. For shared control methods, an intended policy is usually predicted,

and the final system input is a function of both the predicted policy and the user’s actual

policy. The type of policy differs depending on the system. If the policy is in the form of

an input, linear arbitration [30] is a widely used method to allocate control between the

system and the user given a particular arbitration function [8, 31–36]. Some examples of

arbitration functions are based on uncertainty [37], a max function over probability [33],

or manually tuned [34]. For policies modeled as a POMDP, the choice of action can either

be influenced by the user input [38, 39], or it could be used to indicate whether to follow

the user’s policy or the predicted policy [40]. If the predicted policy is a trajectory, [41]

generates safe mini-trajectories for each incremental waypoint while [42] uses a cooperative

motion planner to optimize the robot’s trajectory to the forecasted one. [43] describes

three Bayesian approaches for providing navigational assistance: a Maximum Likelihood

(ML) approach that chooses the trajectory that maximizes the user model, a Maximum A

Posteriori (MAP) approach that maximizes the posterior probability, and a greedy POMDP

approach for multi-model estimation. Assistance approaches vary in terms of the level of

control abstraction from the actual user input, from distinct arbitration to the user input

acting as a prior in Bayesian methods.

Goal/Task specification. This is the highest level of teleoperation that the operator

can engage in without having a fully autonomous system. In this case, the operator

teleoperates a robot by providing high level commands such as selecting sequential sub-goals

or specifying sub-tasks. The robot is responsible for the autonomy to complete the sub-task,

computing the relevant trajectories and translating them into low level control inputs that

are safe and stable [33, 44].

2.3.1.2 Human Decision Models

The Boltzmann noisily-rational decision model [45] is a commonly accepted model for

modeling human decision making. This model stems from theories of human decision

making, in particular, Luce’s axiom of choice [46]. In Luce’s choice model, the humans’s

decision making process is modeled as a reward function, maximizing the weighting (or

reward) of one particular choice over a set of choices. The Boltzmann model extends the

model to utilize exponential rewards, thereby formulating a soft-max function over the

weights associated with each choice [47].
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The reward-based intent model has been popularized in many different applications

[48–51]. Model learning and incorporating feedback from the human has been widely studied

within the context of this framework [52].

2.3.1.3 Human Intent Representation

Intention can represent different quantities given particular scenarios: In [53], a direct

robot input is inferred using a physics-based model. For intent modeled as a latent variable,

[54] constructs a probabilistic representation for predicting measurement and transition

models using Gaussian Processes (GP), whereas [55] employs a single latent variable to

represent user behavior trained using an artificial neural network (ANN). Task -based intent

can be inferred using pre-defined task features [33] or probabilistically using Gaussian

Mixture Autoregression with statistical features [42]. For trajectory inference, a mixture

distribution over a set of composite trajectories for multiple agents is used in [56], whereas

a Bayesian trajectory recognition framework that provides a probabilistic distribution over

a set of possible trajectories to possible goals is used in [38, 57, 58]. If intent is described

as a cost function, [59] defines a joint user-robot cost function which is refined iteratively

using Kullback-Liebler Divergence based on the principle of minimum cross-entropy. Intent

defined as goals can be inferred using a Voronoi diagram combined with local Gaussian

Mixture Models [60], using inverse models of system states [41], using artificial potential

fields [61], or using Maximum Entropy inverse optimal control (MaxEnt IOC) to construct a

distribution of all possible goal states, assuming the user is approximately optimizing some

cost function for their intended goal [8, 30, 36]. In controlled settings, intent representation

trends toward goal-based methods, whereas dynamic environments typically utilize task or

trajectory based methods.

2.3.2 Planning and Trajectory Generation

2.3.2.1 Motion Planning

Given an objective and an environment, motion planning methods involves two separate

methods: 1) Optimization methods, or 2) using sample-based motion planning coupled with

smoothing using optimization.

Optimization-based methods. Optimization methods require computing the explicit

gradient of the objective with respect to its parameters, usually a cost formulation over an

Euclidean Signed Distance Field (ESDF) [62–64]. CHOMP [63] is a well-known optimization

based approach, generating paths in the global space with respect to the gradient of the

cost. However, CHOMP does not produce a time-parameterized trajectory; In [65], instead

of optimizing for the path points, the optimization computes the end-point derivatives,

which can be used to compute a time-parameterized polynomial.

Sample-then-smooth methods. Sample-based motion planning usually separates the
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trajectory generation problem into a bi-level kinodynamic planning problem: 1) generate

a geometric path in the state-space to seed an initial path, and then 2) refined using an

optimization based method to generate a dynamically feasible trajectory from the geometric

path [66–71]. [66, 68, 70] search directly in the space of discretized higher order derivatives

instead of points in the state space, then refine the resulting path via bspline optimization

using an ESDF of the environment. [72] generates a topological roadmap using a visibility

Probabilistic Roadmap (PRM) by sampling directly in the free Euclidean space, which is

then refined using bspline optimization.

Alternatively, an alternate approach is to directly sample from the space of trajectories

[73] and output a distribution of parameters that represent the minimum cost trajectories.

Monte Carlo Tree Search (MCTS) has been applied in single and multi-robot motion planning

for mobile robots [74, 75]

Motion primitives. Instead of geometric paths, one can compute motion primitives on

discretized lattice grids for ground [76, 77] and aerial [78] robots. By concatenating motion

primitives, one can build a tree of trajectories [79], although a naive tree construction could

face combinatorial explosion in the number of resulting nodes, which can quickly become

intractable to evaluate in terms of the number of trajectories.

Global-local planning architectures. Global-local planning architectures have been

deployed in autonomous systems for global navigation and local collision avoidance for both

UAVs [80, 81] and ground robots [82–85]. These methods usually plan a global path to a

pre-specified goal location using a global planner such as A* or RRT variants, which is then

used as a guiding path for local trajectory generation and selection that satisfies dynamic

constraints and safety requirements.

2.3.2.2 Trajectory Representation

Polynomial. The most common trajectory parameterization is a polynomial specified

by the coefficients of the polynomial. The coefficients can be uniquely determined by fixed

initial and final control states and a fixed duration. This representation is well used in MAV

trajectory generation as continuity up to jerk is required in order to fully determine the

control inputs to the quadrotor model [86, 87].

B-spline. A B-spline is a piecewise polynomial parameterized by a set of control

points, a knot vector. The key to the b-spline representation is that it has the convex hull

property, which allows the higher order derivatives (velocity, acceleration, jerk, etc) to be

checked against dynamic feasibility subject to higher order derivative constraints. B-spline

representations implicitly guarantee continuity between higher order derivatives between

subsequent control points [69, 70, 88].
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2.3.2.3 Trajectory Similarity Measures

Common trajectory similarity measures include Dynamic Time Warping (DTW), Fréchet

distance, and Hausdorff distance. Dynamic time warping aligns two sequences of points

non-linearly in the time dimension to find similarities in the space dimension of two matching

paths. Hausdorff distance evaluates the similarity between two sets of paths by computing

the supremum of the set of point-wise infimum distance between discrete points. The

Fréchet distance is similar in definition to the Hausdorff distance, but differs in that the

two sequences are ordered, therefore the infimum lengths computed must be evaluated by

following the order of the points such that the pairs may not backtrack or skip beyond its

sequence neighbors.

2.4 Assumptions

There are many system and design considerations associated with teleoperation that

may be of interest. We limit the scope to follow the assumptions listed below.

Latency. There are three broad types of latency inherent in teleoperation systems: 1) The

physiological latency between the time that the operator receives feedback and when

an operator issues a command, and 2) the latency between the time that an operator

command has been issued until the vehicle is able to execute that command, and

lastly, 3) the time between the vehicle executing that command and the time feedback

has reached the operator. In this work, we assume that the operator command is able

to be executed without delay with immediate visual feedback, therefore ignoring delays

caused by (2) and (3), acknowledging that (1) is inherent in all human operators.

While the methods presented may indirectly alleviate issues with (2) and (3), its

effects are not studied extensively as a part of this work.

Visual feedback. Systems with degraded visual feedback may greatly affect the operator’s

decision making process. This work does not investigate the effects of visual information

degredation caused by occlusions. It is assumed that the operator has sufficient visual

information in order to make an informative decision. Therefore, the operator is

presented with a third-person-observer view that follows the level frame of the vehicle

in simulation. For MAVs, this perspective view is often not achievable on hardware

without extensive mechanical and system engineering in stabilizing and transmitting

vehicle-mounted camera views. Therefore, the hardware experiments are carried out

with the operator directly observing the vehicle from ground.

Haptic feedback. Haptic or input-related feedback can be an useful tool in informing the

operator of the vehicle’s surroundings. However, we exclude this consideration in our

work and does not assume dependency or use of haptic feedback devices.

Human interface design. The physical interface used by the human operator can greatly
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influence how the operator interact with the robot. An interface can be physical (e.g.,

a control panel) or virtual (e.g., a mouse-based interface to select buttons on a screen);

as well as discrete (e.g., buttons) or continuous (e.g., knobs, joystick, steering wheels).

Typically, continuous inputs are associated with lower-level control whereas buttons

are associated with high-level control such as mode selection. In our work, we assume

that the operator is controlling the robot via a standard continuous stream input

device, such as a joystick or a gamepad with continuous knobs.

Engagement. It is assumed that the human operator is fully engaged with the robot, and

that the human operator does not have any distractions that could result in periods

of negligence.

Collaboration. It is assumed that the human operator is teleoperating the robot is not

an adversarial agent. For example, if the robot is heading into an wall that extends

infinitely, the operator does not continue to drive the vehicle into the wall. Instead,

the operator is expected to steer it away to avoid a collision.
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3

Motion Primitives based HITL Control

One of the challenges in easing teleoperation for general operators is to allow the operator

to focus on the motions of the vehicle in the state space. This chapter introduces motion

primitives based teleoperation, which allows a direct parameterization of a system’s inputs

to its state space outputs by way of forward propagating dynamic models. While motion

primitives based teleoperation of ground vehicles can directly invert and propagate a unicycle

model, this is difficult and unintuitive to do for a complex system such as the multirotor

UAV. The key insight of this chapter is that, we show that the same unicycle model can

be translated to multirotor UAVs by leveraging differentially flat properties of multirotors.

This strategy facilitates teleoperating complex systems that may have difficult dynamics by

using a familiar model that may already be known to operators. Further, dynamical models

such as multirotor UAVs require continuity of higher order differentials in order to execute

aggressive and smooth motions; we show that this can be achieved using the selected model

while maintaining continuity of the trajectory up to snap.

Sections of this chapter first appeared in [17–19].
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3.1 Introduction

For high dimensional nonlinear robotic systems, the choice of using teleoperation has

been the preferred method of control and planning for navigating robots in unfamiliar

scenarios. In direct teleoperation of mobile robots, operators issue inputs, such as linear

and angular velocities to the robot. As mobile robots are often operating in dynamic

environments with disturbances, the operator is required to be vigilant, reactive, and precise

in issuing correct inputs in order to keep the robot safe. To mitigate human error and

to allow the operator plan the robot trajectories with certainty, this chapter presents a

novel abstraction of system-specific control inputs, or actions, into the state space for

teleoperation. Given an action and a kinematic or dynamic model, the input is mapped

using some given dynamics into a time-parameterized trajectory. Thus, motion primitives

represent temporally extended actions in the state-space. Motion primitives are well-known

tools in planning for manipulation, gait, and mobile systems [89–91]. In this work, we

leverage this technique for teleoperation.

For systems with a known kinematic or dynamic model, the motion primitives are, in

fact, equivalent to input-based teleoperation as one can forward propagate the model for

the selected action; however, any kinematic model that does not violate non-holonomic

assumptions may be used instead of the full dynamics of the robot. By construction, the

direct correspondence between the action space and the state space allows teleoperation to

occur directly in the state space of the robot. Motion primitive based teleoperation allows

the operator to solely act in the role of the planner, alleviating the operator from having

to provide high frequency and reactive inputs in the presence of disturbances. In this

chapter, we begin with motion primitives for ground vehicles that are continuous up to

acceleration, and present snap-continuous motion primitives for aerial vehicles, ensuring

smooth teleoperation at high speeds.

Second, this chapter introduces a novel assistance methodology by moderating the

available range of motion according to the predicted directional intent via sampling. We

model the operator as an optimal controller [92]. Consequently, the operator’s action

selection policy is modeled as a reward function. We assume that the operator optimizes a

reward function over time, and issues an action that most closely reflects the optimal reward.

This assumption allows assistance to be formulated for perpetual tasks, such as navigation

and exploration for ground and aerial vehicles. Contrary to other methods, limitation of

the available motion primitive set still allows the operator to retain control over the robot.

The implicit assumption here is that a human’s criterion of optimality will be satisfied with

some bound around the quantifiably optimal value; thus restriction of the allowable set of

motion primitives will actively aid the operator. By subsampling the available range of

motions, we ensure that the operator’s choice of motion follows the probabilistic distribution

over the action space. We compare our approach to two baseline tests: a naïve filtering

method on previous inputs, and direct velocity-based teleoperation without adaptation.
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We evaluate the proposed and baseline approaches using behavioral entropy techniques

and show provably better performance of the resulting trajectories and adherence to the

operator’s intended direction than baseline methods.

3.2 Approach

We begin with a discussion of teleoperation using motion primitives in Section 3.2.1 and

discuss motion primitive generation for ground and aerial vehicles.

The adaptive teleoperation framework is presented in Section 3.2.2 given a set of known

motion primitives. The operator model is provided in Section 3.2.2.1. Adaptive teleoperation

using the model is presented in Sect. 3.2.2.4.

3.2.1 Motion Primitives for Mobile Robots

3.2.1.1 Control input parameterization

Inputs from the operator are received as a continuous stream of real values coming from

a continuous input device, such as a joystick or gamepad.

We define an action to be a set of inputs provided via an external input device. For q

input dimensions, an action is denoted as a = {a1, . . . , aq}. Furthermore, we assume that

each of the input domain ai is convex. For the continuous input, we discretize the input

values in each dimension to obtain the action space, which consists of q sets of N finite

actions.

A motion primitive γ(t) is a parameterized function defined over a time interval t ∈ [0, T ]

which generates a unique sequence of states given an initial state x0 ∈ X , and an action a:

γa,T : [0, T ]→ X a ∈ A, T ∈ [0,∞) (3.1)

where A = R
m is the action space. The span of the action set generates a motion primitive

library (MPL), which is a discrete set of motion primitives created using the discretized

action set:

Γ = {γai,T }, i = 1, . . . , N (3.2)

with N actions, {ai}, i = 1, . . . , N . Hence, an MPL will contain q ×N motion primitives,

and is treated as an indexed set of motion primitives parameterized by the action space.

Between sequential inputs, continuity and smoothness are enforced in the transition

from one motion primitive to another. If the operator provides an input at time tf , where

0 < tf ≤ T , then γt(tf ) = γt+1(0) for position and higher derivatives of the sequential

motion primitives. As unsmooth transitions between motion primitives may saturate

motor limitations, the design of the transitions is crucial for providing teleoperation safety.

In the following sections, we discuss forward-arc motion primitives for ground robots

23



Chapter 3. Motion Primitives based HITL Control

in Section 3.2.1.2, and extending it to dynamically feasible aerial motion primitive in

Section 3.2.1.3.

(a)

γ t=1
γ t=2

γ t=3

γ t=4

Γ t=1= {γ i}N ω

Γ t=2= {γ i}N ω

Γ t=3= {γ i}N ω

Γ t=4= {γ i}N ω

(b)

Figure 3.1: (a) A motion primitive library generated for a 2D unicycle model. For easier visualization,
only discretizations in angular velocity ω are shown. (b) A trajectory formulated over four time steps. The
selected motion primitives at each time step (in red) form a single trajectory.

3.2.1.2 Motion Primitives for Ground Vehicles

The simplest class of motion primitives are obtained by forward propagating the kine-

matics (or dynamics) of the robot. If the kinematic model is known, then a motion primitive

can be defined as the position and higher order derivatives obtained by propagating the

selected action by some constant amount of time, T .

Forward-arc motion primitives are an example of parameterized motion primitive for

ground vehicles by by propagating the dynamics of a unicycle model with a constant linear

and angular velocity for a specified amount of time, T [93]. The motion primitives are given

by the solution to the unicycle model (3.3):

ẋ(a, τ) =







vx cos(ωτ)

vx sin(ωτ)

ω






(3.3)

The solution to Eq. (3.3) is:

xt+T = xt +







vxt

ωt
(sin(ωtT + θt)− sin(θt))

vxt

ωt
(cos(θt)− cos(ωtT + θt))

ωtT






, (3.4)

where xt = [xt, yt, θt]
⊤ represents the pose of a ground vehicle at time t in the body frame,

and vxt, ωt are the linear and angular velocities of the vehicle at time t in the body frame,

respectively. The action space is given by uniformly dense sets of actions, denoted as the
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following: Vx = {vxi}, i = 1, . . . , Nvx , Ω = {ωj}, j = 1, . . . , Nω. A single motion primitive

at each time t is denoted by γt = {at, T} where at = {vxt, ωt} and T is some fixed duration

indicating the length of the motion primitive. Note that the operator has the ability to

generate a new input at any time tf for 0 < tf ≤ T . Thus if no new input is received, then

at+1 = at and Γt+1 = Γt.

For differential drive ground vehicles, these motion primitives are equivalent to input-

based teleoperation. An example of the forward-arc MPL in 2D is shown in Fig. 3.1a.

Figure 3.1b depicts the MPL selected at each time t with the initial condition matching

that of the current robot state. The set of each selected motion primitive at each time t

forms a smooth trajectory in a fixed frame.

3.2.1.3 Snap-Continuous Motion Primitives for Multirotor Aerial Vehicles

The dynamics of a MAV are cannot easily be forward propagated. However, multirotors

are differentially flat systems [86], implying that exact control inputs can be computed such

that the vehicle follows a specified trajectory in the flat outputs x, y, z, and yaw θ. This

property can be exploited to generate motion primitives using a choice of a dynamic model,

since time-parameterized trajectories generated in the flat outputs can be satisfied with

respect to dynamic feasibility bounds.

For ground vehicles, the heading of the vehicle is fixed to the yaw of the vehicle by

nature. Although aerial platforms such as quadrotors can independently control heading

from yaw, we maintain the use of a unicycle model by ensuring that the heading is equivalent

to the yaw of the vehicle, as humans naturally optimize for curved trajectories in robot

control [94] with heading aligned with the zero yaw angle.

From Eq. (3.4), it is evident that forward-arc motion primitives preserve continuity

up to velocity in concatenating consecutive motion primitives, as it is the solution to the

kinematic model of ground vehicles. To apply these motion primitives for quadrotor vehicles,

we need to preserve the smoothness between consecutive motion primitives. For quadrotors,

smoothness usually requires continuity up to jerk [86]. Thus, we extend Eq. (3.4) to generate

motion primitives that retain differentiability up to jerk and continuity up to snap. From

the resulting motion primitives, we can calculate desired vehicle attitude, angular velocity,

and angular acceleration for use as feedforward terms in the controller.

The motion primitives are parameterized as follows. We define a local frame L to be a

fixed z-axis aligned frame, taken at a snapshot in time. The motion primitive definition will

be provided in the local frame at the time at which an input is issued, and can be freely

transformed into a fixed global frame or body frame for control purposes. The unicycle
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model in 3D is:

ẋ(a, τ) =











vx cos(ωτ)

vx sin(ωτ)

vz
ω











, (3.5)

where τ ∈ [0, T ] and xt = [xt, yt, zt, θt]
⊤ is the pose of the aerial robot with θt being the yaw

of the vehicle. The additional input dimension has action space Vz = {vzk}, k = 1, . . . , Nvz

for vertical velocity. The action is defined as at = {vxt, vzt, ωt} in the local frame at which

the input is issued, where vx is the x-velocity (i.e., the forward velocity of the vehicle), vz is

the z-velocity, and ω is the yaw rate.

To generate snap-continuous motion primitives, we constrain the initial and final higher

order derivatives of the motion primitive, with the endpoint velocities provided by Eq. (3.5).

The position endpoints are unconstrained and we enforce all higher order derivatives above

Figure 3.2: Motion primitive library constructed with forward arc primitives. The variations in angular
velocity, z velocity, and linear velocity are added incrementally for maximum clarity.

(a) (b)

Figure 3.3: (a) A trajectory composed of 3-segments of motion primitives that switches to a new motion
primitive at arbitrary points along the trajectory that have non-zero higher-order-derivative terms. The
discarded trajectory is shown in dotted lines. (b) Higher-order time derivatives (velocity, acceleration, jerk,
and snap) of the three segment trajectory, showing that the trajectories are differentiable up to jerk and
continuous in snap at the switching points. At the end of the trajectory, all higher order derivatives are zero
except for the operator specified velocity.
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velocity to be zero.

Regeneration step k occurs at time tk ∈ R
+ when a new input is received from the joystick,

or the previous trajectory γak−1,T finishes executing. Alternatively, a fixed regeneration rate

can be chosen in order to accommodate changes in the environment for collision avoidance.

A library of dynamically feasible motion primitives is generated in the local frame Ltk
specified by the reference state at time tk, i.e. xref(tk) = γak−1

(tk − tk−1), given a set of

discretized actions ak. Each motion primitive γ is a vector of four 8th order polynomials

that specify the trajectory along the position coordinates x, y, z and yaw coordinate θ.

Given an action ak, each motion in the motion primitive library is generated in frame Ltk
according to

γak,T (t) =
8
∑

i=0

cit
i (3.6)

s.t. γ
(j)
ak

(0) = x
(j)
ref (tk) for j = 0, 1, 2, 3, 4

γ̇ak
(T ) = ẋak

(T )

γ
(j)
ak

(T ) = 0 for j = 2, 3, 4

where {·}(j) specifies the jth time derivative. Note that all constraints are appropriately

transformed into Ltk .

The result of having snap-continuous motion primitives (see Fig. 3.3) ensures that we

have smoothness in error dynamics, thus minimizing instabilities and tracking error while

the vehicle travels at high speeds.

3.2.2 Adapting Motion Primitives According to an Operator Model

In this section, we discuss a novel methodology for adapting the set of available motions

to the operator according to an optimal control based operator model. We define an operator

intent model over the space of motion primitives with the operator acting as an optimizing

controller. Using the inference model, we provide assistance in the form of adaptation

by subsampling the set of available motion primitives. However, a key assumption of the

following framework is that the operator is not adversarial. This is to say, the operator will

always act in favor of their intended motion and will not attempt to circumvent assistance.

3.2.2.1 Operator Intent Model and Inference

We assume that the operator inherently optimizes a reward function, but the action

selected at each time step does not optimally reflect this function. This is the notion of

“good-enough” – that humans operate within some region of optimality but do not always

select a single optimal action [95]. In this particular problem, the operator issues action a
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Figure 3.4: An illustrative graphic of the proposed approach. The operator begins each trial with access to
an uniformly dense motion primitive library (MPL) that varies only in angular velocity. Over time, our
algorithm updates the belief distribution over the set of motion primitives with respect to the operator’s
intent. At each input time t, a subset of the motion primitives is sampled with respect to the belief
distribution. The operator input maps to a motion primitive from the subsampled set via a selector function.

at each input time t, which is in some neighborhood of a⋆, the optimal action that satisfies:

a⋆ = argmax
a

Rt(γa) ≈ argmax
a

Q
∑

i

αi
tφ

i
t(γa), (3.7)

where φi’s are basis functions defined with respect to quantifiable natural human behavior,

for a total of Q basis functions. We assume the reward function is composed of linear basis

terms. Thus, the inference problem is the prediction of the underlying reward function,

R̂t =
∑Q

i α̂
iφit, from the series of noisy operator inputs {a1,a2, . . . ,at−1}.

Using this model, we infer the operator’s motion selection policy as the solution to the

following optimization problem:

γ̂t+1 = argmax
γa,t+1

Rt(γt−m:t, γa,t+1)

= argmax
γa,t+1

Q
∑

i

αiφit(γt−m:t, γa,t+1),

(3.8)

where γt−m:t represents a trajectory formed by the past m motion primitives at time t, and

γt+1 ∈ Γt+1. Equation (3.8) is the key assumption that reflects the notion of “good-enough,”

which allows us to define assistance that inherently reflects this property.

Given an estimate of the operator’s reward function, we can iteratively update the

probability of a motion primitive being selected at the next time iteration. The prediction

update is provided in Eq. (3.9). Given an initial uniform distribution over the set of motion

primitives, one can update the probability of the n-th motion primitive being chosen at

the next time step given the probability of the reward based on a segment of the previous
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Figure 3.5: System diagram of the proposed adaptive framework. The operator issues an input from a
joystick and selects a motion primitive as described by the input selector. While the robot follows the motion
primitive, the choice of motion primitive is used in the adaptation framework to generate a subsampled set
of the full underlying motion primitive library that tailors better towards the operator’s intent. At the next
time step, the joystick action is mapped to a motion primitive in the subsampled set.

trajectory:

p(γnt+1|γt−m:t, R̂t) =
p(R̂t|γt−m:t, γ

n
t+1)p(γ

n
t+1|γt−m:t)

p(R̂t|γt−m:t)

= η p(R̂t|γt−m:t, γ
n
t+1)p(γ

n
t+1|γt−m:t)

(3.9)

where the past trajectory is denoted by γt−m:t, which is the past m selected motion primitives

as observed at time t, and the distribution p(R̂|γt−m:t, γt+1) estimates the reward function

of the operator, as introduced in Sect. 3.2.2.1, with η being the normalization weight.

3.2.2.2 Reward Bases

For mobile robots, the operator acts as a high level trajectory planner. To this end, we

define several bases that are intrinsic to human motion planning, inspired by [56, 96]. As

the operator issues inputs over time, the inputs are made to follow a trajectory that is more

conducive to human motions; thus a natural choice of bases is to optimize for what humans

deem to be natural trajectories.

It is entirely possible for bases to only be functions of past trajectories (called hindsight

bases) for the purposes of intent prediction. However, it is possible to incorporate prior

knowledge, either in the form of a known trajectory or other environment models such as

disturbance or obstacles fields. Here, we present three hindsight bases for the quadrotor air

vehicle (smoothness, orthogonality, and time), and an additional distance metric given a

desired trajectory to follow (distance error). These are defined as follows:
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Smoothness We define smoothness as the magnitude of change in the input:

φsmoothness(γt+1, γt−m:t) =

t+1
∑

j=t−m+1

‖aj − aj−1‖1 (3.10)

Orthogonality We penalize any drastic deviation in heading from the previous trajectory.

This is defined using a simple ratio for three points as follows:

φorthogonality(γt+1, γt−m:t) =
‖pt − pt−m‖ − ‖pt+1 − pt‖

‖pt+1 − pt−m‖
− 1 (3.11)

where each point pτ ∈ R
3 is the position at time step τ at time T obtained from the motion

primitive: pτ = γaτ (t = T ).

Time We define the cost of time as the inverse of the linear body velocity, which allows

for inference over the desired speed of motion:

φtime =
1

vx
(3.12)

Distance Error If a desired trajectory is provided, the distance error between the motion

primitive and the trajectory can be calculated by approximating the area or volume for

2D and 3D trajectories respectively [97]. Given two paths {p1, ..., pn} and {q1, ..., qn}, the

distance error between the two can be defined as:

φdistance =

n
∑

i=2

1

2
(‖pi − pi−1‖2 + ‖qi − qi−1‖2) ‖pi − qi‖2 . (3.13)

3.2.2.3 Reward Function Estimation

The reward function is inferred from a past window ofmmotion primitives. The belief dis-

tribution of the reward

p(R̂|γt−m:t, γ
n
t+1) is computed over the entire motion primitive library. For this study,

we assume that each input dimension is conditionally independent. The belief distribu-

tion is computed using an online function approximation to estimate the reward function,

R̂t =
∑Q

i α̂
iφit. We employ Locally Weighted Projection Regression (LWPR), a compu-

tationally efficient online method for local approximations of high dimensional nonlinear

functions [98] to estimate the reward function. The incremental algorithm performs global

function approximation by taking a weighted sum of the local regressors that influence the

region.

The regression over the reward bases is defined with respect to a linear global reward

function, which is estimated using LWPR. A global LWPR model is sufficient for tasks
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with a single intent. However, tasks that may require dynamic changes in intent – for

example, high-speed driving or flight with inference over the angular velocity – such tasks

require a more temporally local prediction in order to adjust to these changes. To continue

leveraging the speed of LWPR, we keep a rolling queue of l LWPR models. At each input

time, a model Mt is popped off the queue and a new model Mt+l is added to the queue.

Each model in the queue is updated with the data received at that time. The prediction at

p(R̂|γt−m:t, γ
n
t+1) is then generated with model Mt. This is a local batch estimation method

for time-varying intent functions that has shown to be computationally tractable over the

time span of interest. More succinct online regression methods that are amenable to time

varying models and conducive to a small number of data points are an area of interest and

will be addressed in future work.

3.2.2.4 Adaptation Using the Operator Intent Model

Subsampled set of motion primitives Unsampled motion primitives Weight distribution

Figure 3.6: Motion primitives and distribution over the motion primitives at selected times along a racetrack
at timesteps t = 0, t = 5, and t = 150 respectively. The prediction becomes more peaked near the mean of
the predicted motion primitive.

Given a dense set of motion primitives and a probabilistic distribution over these motion

primitives, assistance is provided by limiting the set of available motion primitives to a

subset adhering to the operator’s intent. By defining a “good-enough” region of interest

around the optima, the set of motion primitives within the region remains safe and feasible,

and most closely reflect the operator intent. We assume that within some short duration,

the operator’s intent does not fluctuate widely and single instances of input that are outside

of the interest region are unintended by the operator.

We adaptively modify the subset of available motion primitives from an underlying set

of motion primitives such that the density of the subsampling reflects the reward function

distribution p(R̂|γt−m:t, γt+1). By use of motion primitives, a particular choice of action at

at time t is represented by its parameterized motion primitive γt for some fixed duration

T . The key insight here is that we have removed the dependency of trajectories on the

continuous input space, thus allowing inference to be made over a set of motion primitives,

which is the set of local trajectories that is safe and feasible.
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To construct the set of available motion primitives, we subsample motion primitives

using importance sampling. As such, within the region of interest, fine-grained control of the

action is preserved by the density of motion primitives. The subsampled set closely adheres

to the operator’s underlying region of optimality and circumvents misaligned motions to the

operator’s interest.

Let the weight of the nth motion primitive be wn = p(R̂|γt−m:t, γ
n
t+1). Given a motion

primitive library Γ of size N , we sample K motion primitives using the weights {wn}, n =

1, . . . , N with replacement such that we obtain a subsampled set:

Γ̄ = {γk} ⊆ Γ, k = 1, . . . ,K, (3.14)

which is the available set of motion primitives provided to the operator.

To map the operator input to a specific motion primitive in the subsampled set, a selector

function (3.15) is used to select the motion primitive with the closest parameterization of

the actual operator input ainput in the continuous input case:

γselected = γ{argmin
a

a− ainput} ∈ Γ̄ . (3.15)

The adaptation methodology is summarized in Algorithm 1. A visualization of this algorithm

is provided in Fig. 3.6.

Algorithm 1: Algorithm for updating construction of the subsampled set

1 Γt+1 ← {γ
n}; n = 1, . . . , N ; Γt+1 ∼ U(0, 1);

2 Γ̄t+1 ← ∅;
3 for n = 1 : N motion primitives do

4 Calculate weights for each motion primitive wn = p(R̂|γt−m:t, γ
n
t+1);

5 for k = 1 : K do

6 Sample γk ∈ Γt with probability wk with replacement;

7 Γ̄t+1 ← Γ̄t+1 + γk;

8 Γ̄t+1;

3.3 Experiments and Results

We present simulation and experiment results for a quadrotor micro-air vehicle. We

introduce a method validation criterion in Section 3.3.2. Vehicle experiment results are

presented in Section 3.3.3.
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Figure 3.7: The quadrotor and joystick used in the experiment (top) and the quadrotor in flight (bottom).

Table 3.1: LWPR parameters for estimating the reward function for both scenarios

Dinit 7 wgen 0.3
αinit 250 wcutoff 0.5
meta false penalty 1.0

Table 3.2: Motion primitive library parameters used in the experiments.

vxmax 0.5 m/s vxmin -0.5 m/s Nvx 101
vzmax 0.5 m/s vzmin -0.5 m/s Nvz 101
ωmax 3 rad/s ωmin -3 rad/s Nω 101

3.3.1 Implementation

The LWPR parameters used in this study are provided in Table 3.1. All parameters that

are not listed here take on default values provided by [98]. For both scenarios, we bound

the rate at which inputs are received to 10Hz.

The MPL was generated using the discretization and range values provided in Table 3.2.

We select velocity bounds that are conducive for non-aggressive maneuvers for this study

and leave adaptation for aggressive maneuvers as future work. We choose a discretization of

0.01m/s for the linear and vertical velocities, and 0.06 rad/s (approximately 3.44 deg/s)
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as the discretization in angular velocity. We find this discretization to be sufficient for the

purposes of this study and does not interfere with the operator’s intentions. One could

choose an arbitrarily large number of motion primitives with finer discretizations, however,

we find that this adds to the computational complexity and our choice of granularity does

not pose a hindrance to the teleoperation performance.

3.3.2 Metrics

We validate the efficacy of our method versus baseline approaches using Behavioral

Entropy [99], an online, nonintrusive measure of workload that characterizes operator

efficiency. Behavioral entropy characterizes the efficiency of an operator’s interaction with a

robot and measures the consistency of an operator with respect to a predictive model based

on the observed behavior. The implication that skilled or desired behavior is consistent

becomes quantifiable in the form of entropy.

For joystick-based continuous-input systems, Joystick Steering Entropy (JSE) [100] is a

behavioral entropy technique that uses a Taylor series approximation model. We evaluate

our assistive teleoperation approach as compared to no adaptation using this metric, and

briefly describe JSE below.

At time t, the error between a second order Taylor approximation and the actual input

is evaluated:

et = ut − ût

ût = ut−1 + (ut−1 − ut−2) +
1

2
((ut−1 − ut−2)− (ut−2 − ut−3))

where u ∈ R is the continuous input. A frequency distribution of the error et is constructed

and divided into 9 bins. The total steering entropy, Hp, for each trial is given by:

Hp =
∑

i

−Pi log9 Pi. (3.16)

A slight modification to the algorithm is made by padding the proportion Pi of each bin by

ǫ ≈ 1e-6 in order to avoid asymptotes:

Pi =
ni
∑

i ni
+ ǫ, i = 1, . . . , 9. (3.17)

As efficiency increases, the steering entropy decreases accordingly.

We further evaluate the correctness of prediction by computing the frequency of inputs

over time. We assert that once the performance is sufficient as deemed by the operator, the

operator will provide inputs less frequently as the generated motion primitive accurately

follows their intent. For mobile vehicles, we compute the frequency of inputs as number

of inputs received per second, and for the humanoid robot, we compute the frequency of

inputs as the number of inputs received per walking step.
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Figure 3.8: Illustrative odometry results for three operators teleoperating a quadrotor one lap around a
simulated racetrack (a) without adaptation, (b) with a low pass filter with α = 0.5, and (c) with adaptation.
Adaptation results in the smoothest trajectory while low pass filter causes the operator to overcorrect due
to smoothing effects.

3.3.3 Results

Two scenarios are used to test the proposed framework using a quadrotor vehicle: a

racetrack of size 30m × 10m at a height of 1m and a lemniscate motion with length of

5m. The racetrack scenario is used to validate single-intent long-duration adaptation. Due

to the size of the racetrack, we perform this task in simulation only. To demonstrate our

framework for dynamic intent and the fidelity of our simulation framework, we evaluate the

lemniscate motion in both simulation and in the flight arena (Fig. 3.7). For simplicity, we

only perform inference over the heading of the robot for all of the subsequent experiments.

This is to say, the motion primitive library only contains variations in ω.

For all of the subsequent experiments, we compare teleoperation results using our

adaptation framework to that without adaptation, and we perform additional trials using a

exponential moving average filter with weight α = 0.5.

Racetrack Results. Operators are asked to teleoperate a simulated quadrotor vehicle

using a joystick and follow the racetrack to the best of their ability. As the trajectory that

the operator is trying to follow is known, this information can be incorporated into the

distance error basis as discussed in Sect. 3.2.2.2. The racetrack is tested with 15 trials

(five with adaptation, five without, and five with a low pass filter). All of the trials are

randomized in arbitrary order, and are anonymized to the operator. For consistency, we

perform the same experiment with three colleagues at Carnegie Mellon University, not

including the authors. All operators do not have any prior experience in teleoperating a

quadrotor aerial vehicle using this joystick setup.

The resulting trajectory with adaptation, without adaptation, and with the low pass

filter is shown in Fig. 3.8. We observe that teleoperation with adaptation produces very

smooth trajectories, much smoother than the trajectories without adaptation. Filtered

inputs produce trajectories that are much more controlled than without adaptation, but

we observe that the trajectories demonstrate periodic behaviors. This is likely due to the

lagging effect of the filter: as the inputs are smoothed over time, this creates a lagging
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Figure 3.9: Results of a quadrotor completing one lap around a racetrack, where adaptive teleoperation is
compared with a low pass filter with α = 0.5 and with no adaptation. (a) Joystick steering entropy averaged
over 5 trials for each test case. (b) Frequency of inputs over time.

1 2 3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Operators

J
o
y
s
ti
c
k
 S

te
e
ri
n
g
 E

n
tr

o
p
y

 

 

with adaptation low pass filter without adaptation

(a)

0 10 20 30 40 50
0

1

2

3

4

5

6

time (s)

F
re

q
u

e
n

c
y
 o

f 
in

p
u

ts
 (

in
p

u
ts

/s
e

c
)

 

 

with adaptation without adaptation low pass filter

(b)

Figure 3.10: Results of a quadrotor completing a lemniscate motion, where adaptive teleoperation is
compared with a low pass filter with α = 0.5 and with no adaptation. (a) Joystick steering entropy averaged
over 5 trials for each test case. (b) Frequency of inputs over time.

effect which causes the operators to over-correct their inputs. We assert that filtering the

operator’s inputs over time misrepresents their true intent and causes them to provide

control-level actions instead of providing only navigational inputs.

We further evaluate our method using Joystick Steering Entropy and frequency of inputs

over time, as shown in Fig. 3.9. While filtered inputs sometimes exhibit higher entropy

due to the operator’s overcorrection, adaptation consistently produced lower entropy than

without adaptation, and with a low pass filter, with an average reduction in entropy of
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13%. While a reduction in entropy indicates that the operator’s inputs are smoother,

and consequently result in smoother trajectories, we notice that frequency of inputs with

adaptative teleoperation is consistently lower than with filtered input or without adaptation

as observed in Fig. 3.9b. This is a key improvement in adaptation as operators provide less

frequent inputs when the behavior of the robot is aligned with the intended behavior.

Lemniscate results. For this scenario, a specific trajectory was not provided to the

operator. Instead, the operator is asked to teleoperate a quadrotor vehicle via joystick

to perform a free-hand lemniscate motion in simulation and in the flight arena. As no

prior trajectory is provided, predictions are based purely on the hindsight bases as defined

in Sect. 3.2.2.2. This experiment uses the incremental adaptive approach outlined in

Sect. 3.2.2.3.
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Figure 3.11: Illustrative odometry results for three operators teleoperating a quadrotor with a free-form (i.e
without pre-defined trajectory) lemniscate motion (a) without adaptation, (b) with a low pass filter with
α = 0.5, and (c) with adaptation. Adaptation results in the smoothest trajectory while low-pass filtering
causes the operator to overcorrect due to smoothing effects.

We first observe the resulting trajectory as shown in Fig. 3.11. We observe slightly

smoother performance with adaptation (Fig. 3.11c) than without (Fig. 3.11a), and similar

overcorrecting behavior for the filtered input is again evident. However, we observe the

performance with adaptation is not as smooth as what was observed with the racetrack

scenario. We attribute this to the fast changes in directional intent that may cause high

variance in the incremental prediction.

Joystick steering entropy and frequency of inputs are also evaluated, as shown in

Fig. 3.10a. As with the racetrack scenario, we notice that while filtered inputs and teleoper-

ation without adaptation show fluctuating entropies, teleoperation with adaptation shows

slightly lower entropy but the reduction is less than expected. We posit that this is a result

of the high variance with the incremental prediction, which we will address as future work in

Sect. 3.4. Frequency of inputs also is reduced over time and is lower than that with filtered

input and without adaptation, however the margin between the average frequency of inputs
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Figure 3.12: Odometry (left) and mean of prediction (right) for three of the experimental trials for the
lemniscate experiment. The actual input (red) is compared to the mean of predicted distribution (blue)
with light blue highlighting upper and lower bounds based on the covariance. Near regions of rapid operator
input changes, variance increases and the mean adjusts to the new prediction.

of adaptive teleoperation and non-adaptive teleoperation is much smaller than that of the

racetrack scenario.

The adaptation process is shown for three different runs of the lemniscate with adaptation

in Fig. 3.12. The raw input is compared to the predicted mean of the input, where we

observe a smoothing of the operator input. In addition, we notice that near regions of rapid

operator input changes, variance of the prediction increases and decreases accordingly as

the mean adjusts over time.

We now validate the number of motion primitives. From the trajectories in the above

scenarios, the choice of discretizing 101 motion primitives seemed reasonable and conducive

to good performance. Furthermore, we visualize the sampled motion primitives over time

for several trials, as shown in Fig. 3.13a and Fig. 3.13b. For the racetrack scenario, we

observe that the number of subsampled motion primitives quickly decreases over time. The

lemniscate result is more interesting. We see that as directional intent changes, the number

of subsampled motion primitives increases suddenly and converges again.
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Figure 3.13: Subsampling of motion primitives over time for quadrotor teleoperation in the (a) racetrack and
(b) lemniscate scenario. Three random trials are shown for adaptation over angular velocity. This illustrates
that a reasonable and non-restricting discretization of the motion primitive is sufficient for constructing the
motion primitive library.

3.4 Discussion

This chapter sets the foundation for trajectory-based teleoperation by introducing

motion-primitives based teleoperation for ground and aerial vehicles. By moving mobile

teleoperation from providing control-level inputs to teleoperation with state-space motions,

we eliminate the need for an average operator to require expertise in teleoperating such a

vehicle.

Further, this chapter explores an adaptation method for teleoperation that allows

assistance of the operator without prior knowledge of an operator model. We experimentally

test our framework via teleoperation of a quadrotor air vehicle. The proposed approach

demonstrated lower behavioral entropy, indicating increased performance. Furthermore, we

demonstrated the correctness of our prediction algorithm to the underlying operator intent

by showing a reduction in the frequency of inputs over time.

Teleoperation safety can further be guaranteed by performing obstacle avoidance by

pruning motion primitives given a local map. In the next chapter, we introduce reactive

collision avoidance for motion primitives based teleoperation.
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Chapter

4

Motion Primitives with Reactive Collision

Avoidance

This chapter addresses collision avoidance with respect to motion primitives based HITL

control. Given a motion primitive library, the parameterized action set allows efficient

collision avoidance by reactively pruning sets of the motion primitive library that leads the

vehicle into collision. This chapter discusses and evaluates reactive collision avoidance with

motion primitive libraries with respect to two mapping approaches.

Sections of this chapter first appear in [19, 20].
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4.1 Introduction

In unknown, cluttered environments, online collision checking approaches enable fast

obstacle avoidance. Mobile robots have moved from a paradigm of operating in well-defined

environments to complex environments, and require online, real-time mapping and collision

checkinng that can operate at a minimum of 10Hz. State-of-the-art methods utilize laser

range finders, monocular cameras, and depth cameras to populate a local map for collision

avoidance [101–107]. Many prior works in high speed flight exploit the field-of-view (FOV) of

stereo cameras for fast collision checking for autonomous flights, including [106, 107], where

trajectories are constrained to be inside the FOV of the depth sensor with a max range

of 10 m. In [102], trajectories generated by RRT∗ are checked for collisions directly in the

disparity space. Lopez and How [108] presents aggressive flight on a 1.2 kg MAV, achieving

a velocity of 3 m/s. These methods achieve fast collision checking by circumventing the

need to construct a local map and checking for collisions in the sensor’s FOV. This however,

limits the range of motions the vehicle can perform. Approaches with local map generation

using a laser range finder [105] and a monocular RGB camera [103] have been shown to

achieve maximum velocities of 1.8 m/s and 1.5 m/s respectively, but data processing limits

the update rate of the local maps.

In this chapter, we present methods of fast reactive collision avoidance by pruning motion

primitive libraries with respect two different local map representations: 1) a voxel-based map

representation using KD-Trees, and 2) a probabilistic representation using Gaussian Mixture

Models, which approximates the underlying distribution from which sensor measurements are

sampled and provides an environment model that scales in fidelity with minimal information

loss [109].

In the experiments for each of the methods, a minimally trained operator is given

full control of the vehicle. We show that fast and agile flights can be achieved with a

human-in-the-loop while maintaining safety in real time. We perform a series of high speed

collision avoidance hardware trials with respect to online-generated KD-Tree local map

in both indoor and outdoor environments with untrained operators. In our experiments,

the hexarotor attains speeds exceeding 12 m/s and accelerations exceeding 12 m/s2. We

are able to safely avoid obstacles at speeds up to 10 m/s and accelerations of 8 m/s2. We

then demonstrate collision avoidance results of a quadrotor teleoperated through through a

cluttered environment at 2m/s with respect to online-generated GMM local map at > 40Hz.

Both methods exhibit fast collision checking.

4.2 Approach

We describe reactive teleoperation with respect to teleoperation using motion primitive

libraries, first described in Chapter 3. We assume that the state estimates of the vehicle do

not drift significantly, such that errors due to state estimation can be considered negligible
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(a)

(b)

Figure 4.1: A trial run of a teleoperated vehicle through a tunnel at 2m/s with collision avoidance. (a) The
vehicle in the tunnel environment (b) The motion primitive library and pruning visualized in the local map
generated of the environment. The operator selects infeasible primitives (in yellow), and it is mapped to the
closest feasible primitive (in blue). The reactive collision avoidance allows the vehicle to traverse the tunnel
without requiring the operator specifying the exact inputs.

Figure 4.2: A quadrotor navigates a cluttered environment via motion primitive based teleoperation. The
dark red ellipsoids represent the Gaussian mixture model components that represent a local map (overlayed
over a dense voxel grid representation for visualization). As the quadrotor navigates through the environment,
trajectories that intersect with the Gaussian components are pruned (red lines) leaving only the safe, feasible
trajectories (grey lines).

in local map generation and collision avoidance and leave considerations of inconsistent

state estimates as future work.

Recall, at each regeneration time, a motion primitive library is constructed by discretizing

the continuous input along each action dimension, such that each action ai ∈ A is selected

from a convex set A := {a ∈ [amin,amax]} with size N1 × N2 × · · · × Nn where Ni is the
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dimension of the space of each input.

At every time step, the operator input is mapped to the closest input in the action space,

as defined by the Euclidean norm. A priority queue that minimizes input distance from the

selected input ajoystick to each input in the action space ai ∈ A is used to iterate through

the action space until a feasible, collision-free trajectory is found. This results in having the

operator input mapped to the feasible motion primitive in the library that is parameterized

by the closest discretized action, i.e. γ(ai) = argmin ‖ajoystick − ai‖.

The effect of this pruning algorithm is that the vehicle exhibits natural behavior in the

presence of obstacles. If a pillar is in front of the vehicle, then the vehicle chooses a motion

primitive some angle away and avoids the obstacle. If a wall is present, then the vehicle will

choose linear velocities that gradually decrease until the vehicle is stopped. This behavior is

demonstrated in Fig. 4.3.

(a) Vehicle slowing to a stop in the presence of an obstacle.

(b) Vehicle slowing down to thread through two pillars.

Figure 4.3: Example demonstration of natural behaviors as a result of the reactive collision avoidance via
pruning. The operator selected motion primitive is in yellow. When the selected primitive is unsafe, the
closest safe primitive is chosen instead, in blue. Infeasible primitives are shown in red.

4.2.1 Trajectory Pruning for KD-Trees

A spatially consistent local map of the robot surroundings is represented as voxel grids,

organized into a KD-Tree. The local map is generated by retaining only the depth sensor

measurements obtained at poses that lie in the vicinity of the vehicle’s current pose. Given

the KD-Tree local mapML, created in the local frame L, we check for the minimum distance

between any point along the trajectory and the surrounding environment. If the minimum
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distance is above the sum of the vehicle size and an operator specified collision radius, the

trajectory is deemed collision-free. Otherwise, the trajectory is eliminated.

Algorithm 2 describes motion primitive library pruning and selection with respect to a

KD-Tree local map.

Algorithm 2: Motion Primitive Library Pruning and Primitive Selection with
KD-Tree Local Map

Input: Given KD-Tree local mapML, collision radius r, vehicle radius rv
1 Receive input ajoystick

2 Generate the minimum input distance queue according to di = ‖ajoystick − ai‖
3 while ai is infeasible do

4 Pop the top action element off of the minimum input distance queue ai
5 Generate motion primitive γai

6 for τ = 0 : T discretized at some △t do

7 QueryML for the closest point p to γai
(τ)

8 if ‖p− γai
(τ)‖ ≥ r + rv then

9 Set ai to feasible
10 Set γ = γai

4.2.2 Trajectory Pruning for GMM-based Maps

(a) (b) (c)

Figure 4.4: A simplified 2D view of the proposed collision avoidance algorithm. A set of motion primitives
interacting with a local GMM map (in burgundy) with configuration space inflation (light burgundy) is
shown in (a). Each Gaussian component is reduced to its 4Σ geometric representation for collision checking,
via (b) sampling points along trajectories or (c) creating linear approximations to the trajectory based on
curvature and solving for ellipsoid-line intersections. Rejected trajectories are shown in red.

We present two ways of computing collisions given a time-parameterized trajectory and

a GMM local map. Each component in the local map can be spatially represented by an

ellipsoidal representation given a Σ-bound of the distribution. We leverage this geometric
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property, and assume that each component can be represented as an ellipsoid as given by:

f(x) = (x− µ)⊤C(x− µ)− 1, (4.1)

where µ is the center of the ellipsoid, C = diag(c−2
1 , c−2

2 , c−2
3 ) and ci are the major axes of

the ellipsoid. We represent the configuration space of the vehicle by a sphere with radius r

centered at the robot’s geometric center. Then, we transform the local map to incorporate

the configuration space by inflating the major axes:

f(x) = (x− µ)⊤D(x− µ)− 1, (4.2)

where D = diag
(

(c1 + r)−2, (c2 + r)−2, (c3 + r)−2
)

. For sufficiency, we take the ellipsoid

defined by the 4Σ probability bound of each Gaussian component, which provides 99.95%

Chi-squared probabilistic coverage of the underlying point density.

Suppose a trajectory is given by x(t) = γ(t), where γ(t) is a time-parameterized function

with t defined over some interval t ∈ [t0, tf ], and x(t) = [x(t), y(t), z(t)]⊤. Then, the

ellipsoid-trajectory equation becomes:

f(t) = f(x(t)) = (x(t)− µ)⊤R⊤DR(x(t)− µ)− 1 (4.3)

f(t) = (x(t)− µ)⊤A(x(t)− µ)− 1, (4.4)

where R ∈ R
3×3 is the rotation matrix to transform the local trajectory into the frame of

the mixture component. An intersection or collision occurs when f(t) ≤ 0.

For arbitrary trajectories x(t), no analytic solutions exist to Eq. (4.4) unless x(t) is affine.

In the following subsections, we present two algorithms for collision checking for arbitrarily

complex trajectories and provide a brief discussion on computational complexities.

4.2.2.1 Sampling based Collision Checking

Instead of computing an analytic solution to Eq. (4.4), a simple check would be to sample

points along each trajectory. For M Gaussian mixture components, N local trajectories, and

S samples per trajectory, the computational complexity would be O(MNS). This approach

is delineated in Algorithm 3.

4.2.2.2 Piecewise Affine Trajectory Approximation

If the trajectory is sufficiently smooth, one can generate piecewise affine (PWA) ap-

proximations to the trajectory using heuristics. For each trajectory, suppose s segments of

affine approximations sufficiently approximate the trajectory. Then, over each segment, the

affine approximation xs(t) = ast+ bs with as,bs ∈ R
3 and t ∈ [ts−1, ts] can be analytically

solved in the frame of each Gaussian component.
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Algorithm 3: Collision Checking with GMM Local Map via Sampling

Input: Given M Gaussian mixture components, N local trajectories, S samples per
trajectory

1 Discretize time interval [t0, tf ] into t = {ti}, i = 1, . . . , S s.t. ti ∈ [t0, tf ]
2 for n = 1 : N trajectories do

3 for m = 1 :M Gaussian components do

4 Obtain the eigenvector matrix Rm, centers µm

5 compute Am = Rm
⊤DmRm where

Dm = diag
(

(cm1 + r)−2, (cm2 + r)−2, (cm3 + r)−2
)

6 for each t ∈ t do

7 Query point at time t: xs = x(t)

8 if f(xs) = (xs − µm)⊤Am(xs − µm) ≤ 1 then

9 Reject trajectory and increment

The ellipsoid-line equation using Eq. (4.2), in the frame of the gaussian component, can

be written as:

f(xs) = (xs)
⊤D(xs)− 1 (4.5)

f(t) = (ast+ bs)
⊤D(ast+ bs)− 1, (4.6)

Without loss of generality, a trajectory can always be transformed into the frame of the

mixture component such that D is diagonal. Collisions are found via solutions to

0 =

(

a21
c21

+
a22
c22

+
a23
c23

)

t2 + 2

(

a1b1
c21

+
a2b2
c22

+
a3b3
c23

)

t+

(

b21
c21

+
b22
c22

+
b23
c23
− 1

)

(4.7)

With the assumption that the trajectory does not begin inside a Gaussian component.

For M components, N trajectories, the number of segments is dependent on the curvature

of the trajectory. The computation complexity would be O(MNSn), where Sn ≤ S, n =

1, . . . , N such that the worst case complexity collapses to that of the sample based approach

(with S samples per trajectory). This approach is delineated in Algorithm 4.

For forward-arc motion primitives, the curvature of the trajectory is correlated with the

angular velocity that is used to generate the motion primitive. As such, our heuristic for

generating the number of segments is defined as follows:

Sn = ⌈1 + k |ωn|⌉ (4.8)

where k = 3 is empirically chosen and ⌈·⌉ is the ceiling operator.
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Algorithm 4: Collision Checking with GMM Local Map via PWA Trajectory
Approximation

Input: Given M Gaussian mixture components, N local trajectories
1 for n = 1 : N trajectories do

2 Heuristically discretize trajectory into Sn segments
3 Compute Sn affine approximations
4 for m = 1 :M Gaussian components do

5 Obtain the eigenvector matrix Rm, centers µm, and transform x into the frame of
the Gaussian mixture

6 for each s = 1 : Sn do

7 Solve Eq. (4.7) and denote solutions as t∗1,2
8 if t∗1,2 ∈ [ts−1, ts] then

9 Reject trajectory and increment

4.3 Experiments and Results

4.3.1 Implementation

4.3.1.1 KD-Tree

We experimentally evaluate our proposed approach on a 3.8 kg hexarotor that fits within

a 20 cm × 60 cm × 80 cm volume (Fig. 4.5a). The hexarotor has an average flight time

of 7 min and a power to weight ratio of 3. Two Intel RealSense D435 depth cameras are

used for mapping: one facing forwards and one facing upwards at a 45 degree angle, which

aids obstacle avoidance while accelerating forwards. A downward facing Matrix Vision

mvBlueFOX-MLC200w is used as the RGB camera input for VINS-Mono and the NVIDIA

Tegra TX2 is used for computation. The hexarotor uses a cascaded PD control architecture

as in [86] with jerk and snap references used to compute feedforward angular velocities and

accelerations.

In order to make KD-Tree local mapping online feasible, we downsample each measure-

ment into an occupancy grid with a fixed voxel size, and only register the voxel centers of

the occupancy grid in the map. This results in a reduced fidelity local map, resulting in

approximately 10000 points in the local map in total. Details of map construction can be

found in [19].

Motion primitives are generated with an angular velocity bound of 2 rad/s. There are 25

discretizations for the vx action, 11 for ω, and 5 for vz for a total of 1375 motion primitives

generated per trajectory iteration. Trajectories are generated at 25 Hz, and the local map is

updated at 30 Hz. We choose the maximum velocity of the motion primitives to be such that

the vehicle can always safely stop given a known constant maximum acceleration, known

sensor range and known sensor and mapping rates. Since our vehicle has a power to weight

ratio of 3, we assume a conservative maximum acceleration at 6 m/s2, and assume a worst
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case sensor and mapping rate of 10 Hz. With a sensor range of 10 meters, this allows for a

maximum motion primitive velocity of 10.37 m/s.

Table 4.1: Experiment descriptions and parameters. T is the duration of the motion primitive, vmax
x is the

maximum desired speed, ωmax is the maximum yaw rate, and r is the collision radius. ·∗ denotes motion
primitive duration increased adaptively as a linear function of the desired velocity change.

Experiment Description T

(s)
vmax
x

(m/s)
ωmax

(rad/s)
r
(m)

Outdoor-A,B
Aggressive teleoperation with
collision avoidance outside

2.0 5.0 1.0 0.8

Indoor-A,B
Aggressive teleoperation with
collision avoidance in a dimly lit garage

1.5 3.0 1.5 0.4

Outdoor-C
High speed, aggressive teleoperation
with collision avoidance outside

1.3∗ 7.0 2.0 0.5

Outdoor-D
High speed, aggressive teleoperation
with collision avoidance outside

1.5∗ 10.0 2.0 0.2

4.3.1.2 GMM

We fit GMMs over depth sensor scans online using an Intel i7-6700K CPU in real-time.

For the KD-Tree representation, instead of using an occupancy grid KD-Tree, we create

a KD-Tree directly with the incoming depth scans, as the GMM approach is capable of

incorporating the incoming depth scans in its representation. We use 1/4 resolution of

the original scan resolution, reducing each incoming data set to 19200 data points. Each

KD-Tree and GMM local map is built over the downsampled scan with an average of 14

frames per local map, resulting in a maximum of 249600 points per local map. Note that

this map size is much larger than the map generated than the map used on the hardware

experiments described in the KD-Tree method. A new KD-Tree is created at each iteration

using the raw data using a discretization of 0.1m. The GMM local map generates 60

components per frame, which results in approximately 300 components per local map. Each

reduced local map contains approximately 30–40 components. Details of map construction

can be found in [20].

Motion primitive libraries contain 155 motion primitives, using 31 linearly spaced angular

velocities ω ∈ {−3, 3}rad/s, 5 linearly spaced vertical velocities vz ∈ {−1, 1}m/s, and limit

the vehicle to a maximum linear velocity of 2m/s. We assume a configuration radius of

0.5m.
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(a) (b) (c)

Figure 4.5: (a) The hexarotor vehicle used for aggressive flights in (b) outdoor environments and (c) a dimly
lit garage. The overlays of the vehicle positions over time depict the trajectories the vehicle took to avoid
pillars in its way.

Figure 4.6: A snapshot of the map and motion primitive library during an indoor hardware experiment
when the user selected motion primitive (yellow) is not chosen to avoid a collision.

4.3.2 Results

4.3.2.1 KDTree

We conduct seven aggressive flight experiments for KD-Tree based local map, including

four outdoor experiments over an area of 40 m× 20 m with obstacles over grass (Fig. 4.5b),

and two indoor experiments in a dimly lit garage (Fig. 4.5c). The experiments are described

in Table 4.1.

Performance results. Experiments Outdoor-A,B,C,D, and Indoor-A,B stress test

our collision avoidance algorithm at high speeds while maintaining aggressiveness in the

commanded trajectories. In both environments, the operator repeatedly tries to fly the

vehicle at the maximum speed, as indicated in Table 4.1, into an obstacle. Figure 4.7 shows
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the speeds and accelerations attained during the six experiments. The vehicle successfully

reaches speeds of 10 m/s and accelerations of 8 m/s2 in the outdoor environment and speeds

of 3 m/s and accelerations of 5 m/s2 in the indoor environment. Figure 4.7 also shows regions

where the operator’s selected motion primitive would bring the vehicle closer than r meters

to an obstacle. In all such cases, the operator’s trajectory is pruned and a collision-free

trajectory is selected. Figure 4.6 shows an example instance of motion primitive pruning to

avoid a collision, along with the local map generated by the vehicle.
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Figure 4.7: Desired (dashed blue) vs. estimated (solid red) speed and acceleration achieved during our six
collision avoidance experiments. During intervention, reactive collision avoidance was triggered in order to
keep the vehicle safe. The system accurately tracks trajectory references and avoids obstacles while reaching
speeds of up to 10 m/s, and accelerations up to 8 m/s2.
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Timing results. Table 4.2 shows that our trajectory generation and pruning time is faster

than the user input rate (10 Hz) and that our map generation time is faster than the sensor

input rate (30 Hz), enabling real time operation. Furthermore, Table 4.3 indicates that the

in-flight computational footprint of the proposed system is less than 75% of the available

onboard capacity.

Further, our timing results for trajectory generation and trajectory pruning shows, on

average, approximately 15-50ms to generate and prune a motion primitive library of size

1375, and a map size containing approximately 10000 points. This results in approximately

a pruning time of 0.01− 0.036ms given the KD-Tree map size.

Table 4.2: Execution time (ms) and std. dev. per iteration for safe teleoperation using a local map containing
10000 points.

Experiment Trajectory Generation Trajectory Pruning Local Map Generation

Outdoor-A 0.47± 0.072 29.37± 24.03 5.72± 5.54
Outdoor-B 0.48± 0.071 23.65± 15.42 5.84± 7.95
Indoor-A 0.50± 0.125 8.34± 5.19 11.67± 14.83
Indoor-B 0.51± 0.219 15.73± 7.23 12.71± 16.78

Table 4.3: CPU usage (%, out of a total available 600%) and std. dev. on a 6 core NVIDIA TX2

Experiment Motion primitive teleoperation Total including state estimation,
control and mapping

Outdoor-A 32.92± 17.59 395.72± 43.53
Outdoor-B 26.70± 19.98 359.89± 60.87
Indoor-A 57.38± 21.25 450.40± 43.14
Indoor-B 58.76± 24.09 456.47± 36.83
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4.3.2.2 GMM

We evaluate the proposed algorithm in simulation in a cluttered environment without

dynamic obstacles as shown in Fig. 4.8.

Figure 4.8: The cluttered environment.1

Safety results. Safety is evaluated using the minimum distance of the vehicle pose to its

surroundings. We use a dense pointcloud representation as a baseline and query the radius

of free space around the vehicle at each iteration. In Fig. 4.9, two 6-8 minute example trials

are shown. Throughout each trial, the vehicle’s configuration space, denoted in blue, is

contained within the free space around the vehicle, denoted in grey, indicating that the

vehicle is safe at all times.

Timing results. We analyze timing and memory efficiency of GMM local maps as

compared to KD-Tree local maps.

We observe that each GMM local map can be generated in approximately 22.89ms

on a single CPU (Fig. 4.10, Top). To store the same amount of data, KD-Tree requires

approximately 41.92ms. GMM based local map is agnostic to the number of frames in

the local map; as new components only need to be appended to the current local map. In

contrast, a new KD-Tree needs to be generated with each new sensor measurement and

scales poorly over increasing amounts of data.

Collision checking timing analysis averaged over 10000 primitives is shown in Fig. 4.10

(Bottom). For each motion primitive, collision check is performed every 0.1m, resulting

on average approximately 20 points per primitive. We observe 0.737ms for KD-Tree based

1Available at: https://github.com/vibhavg/simulation_environments
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(a) (b)

Figure 4.9: A visualization of free space around each vehicle vs. configuration space for example trials with
(a) GMM local map with sampling, and (b) GMM local map with PWA approximations based collision
avoidance. The blue line denotes the pose of the vehicle and the light blue shading denotes the configuration
space of 0.5m.

collision check per motion primitive, 0.204ms for GMM local map with sampling-based

collision check per motion primitive, and 0.150ms for GMM local map with PWA motion

primitive approximation. Sufficiently representing the local map using a low number of

components contributes to significant speed-ups over KD-Tree queries.

Note that here, we are using a KD-Tree generated using the raw data scan, rather than

a downsampled occupancy-grid approach. With a KD-Tree map size of 25× the size of the

previous KD-Tree map, the query time per primitive significantly increases. This is observed

in the per trajectory timing, as compared to the results presented in the previous section.

4.4 Discussion

This chapter extends motion primitive libraries to reactive collision avoidance by pruning

the available future motions in anticipation to obstacles in various local map representations.

We presented a pruning approach for motion primitive libraries by mapping operator input

to the safe set of available actions. The pruning approach is demonstrated in both a voxel-

based discretized map representation by way of KD-Trees, and a probabilistic continuous

map representation by way of Gaussian Mixture Models, with the latter including two

analytic methods for collision checking given arbitrary trajectories, leveraging the geometric

properties of Gaussian components.

We demonstrate teleoperation and collision avoidance with KD-Tree on a hexarotor

vehicle that allows consistent obstacle avoidance while traveling at speeds up to 10 m/s in

an outdoor environment and in a dimly lit garage indoor environment. While this approach

yielded significantly low computation times for collision checking, it requires significant map

downsampling. We test the GMM based approach in a cluttered artificial environment, and
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Figure 4.10: Top: Timing analysis for GMM local map generation, averaged over 1000 local maps containing
249600 points. GMM local map takes 22.89ms to learn, whereas KD-Tree local map would take 41.92ms
to generate. Bottom: Timing analysis for per motion primitive collision checking with samples and PWA
motion primitive approximations, as compared to using KD-Tree representations. GMM methods take
0.25ms for collision checking per motion primitive, whereas KD-Tree takes 0.75ms per motion primitive.
Error bars report standard deviation of the mean.

demonstrate that, using the raw depth sensor data for map creation, GMM based mapping

reduces the collision checking time as opposed to using the KD-Tree map representation

on the raw data. For both approaches, we show successful reactive collision avoidance in

teleoperation on computationally constrained platforms on hardware and densely cluttered

simulation environments.
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Chapter

5

Local Trajectory Generation for HITL

Planning

Reactive methods, as discussed in the previous chapter, assists the operator in keeping

the vehicle safe, but neglect the operator’s intention in doing so. In this chapter, we

present a method that generates long horizon, smooth trajectories that follow the operator’s

intended direction while circumventing obstacles for a seamless teleoperation experience.

As trajectories of various lengths can satisfy the same directional objective, we iteratively

construct a tree of sequential actions that form multiple trajectories along the intended

direction. We show our algorithm on a real-time teleoperation task of a simulated hexarotor

vehicle in a dense random forest environment. By doing so, our approach allows operator to

achieve the navigation task while requiring less effort than reactive methods.

This chapter first appears in [21].
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Figure 5.1: A human-in-the-loop controlled hexarotor being teleoperated in a densely cluttered environment,
with trajectories that follow the directional intent of the operator while bypassing obstacles in the environment.
The proposed method generates long-horizon, smooth trajectories that enables operator navigation of mobile
vehicles in unstructured environments with reduced effort, especially in dense environments that require
operators to be vigilant to avoid collisions while focusing on the navigation task.

5.1 Introduction

Teleoperation of mobile robots is often used in unstructured environments to achieve a

task such as navigation, exploration, or search and rescue. To assist operators, current works

mitigate collisions by reactively steering the vehicle away from obstacles using haptic feedback

[25] or augmenting control inputs [28]. These approaches do not take into consideration

the operator’s intentions, and require operators to react fast in environments such as those

shown in Fig. 5.1. Instead of pushing the vehicle away from an obstacle that may be along

the operator’s intended path, we propose generating long horizon smooth trajectories that

circumvent obstacles while following the operator’s intention. The autonomously generated

trajectory reduces the need to engage the operator at a high frequency in dense environments,
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ξ1 ξ2

Intended Direction

Figure 5.2: This illustration shows two trajectories, ξ1 and ξ2, that both characterize a “go straight” motion.
In this scenario, ξ1 can be achieved by taking one action (forward), and ξ2 requires at least three actions in
order to successfully avoid the obstacle (forward, right, left). However, the vehicle will likely end up in a
collision state after taking ξ1 with the obstacle. It is more likely that ξ2 is the intended trajectory that the
operator prefers.

which has been shown to cause fatigue [110].

Generating trajectories that align with the operator’s intentions is a difficult task, as a

fixed goal may not be known, or the operator has a specific trajectory in mind that they

would like to take. In this case, it is prudent to represent operator’s intent as a direction

instead of an explicit goal in the state space [18]. An example of this is directional intent

objective that corresponds to a “go straight” motion, as shown in Fig. 5.2. In this navigation

scenario, it is more likely that the operator want to move forward while avoiding the obstacle

than to crash into the obstacle, even though the provided input would lead to a crash.

There are a few challenges for this trajectory generation problem with the intent objective

as a cost function: 1) The intent objective may be optimized with multiple trajectories with

varying lengths; 2) the trajectories needs to remain in a collision-free space while adhering

to the intent objective; and 3) the trajectories needs to be generated without specifying a

specific state-space goal.

Therefore, we propose a trajectory generation method, Biased Incremental Action

Sampling (BIAS), that minimize length-agnostic intent objectives while remaining inside

a nonconvex collision-free space. Instead of sampling states in the larger state space, the

proposed approach iteratively constructs trajectories by sampling and adaptively increasing

the feasible action space as needed, with the cost function acting as a bias towards the

minimum cost action sequences. The resulting action sequences are translated into sequential

motion primitives which form a snap-continuous trajectory.

We showcase this approach in a navigation task of a UAV in a dense random forest as

shown in Fig. 5.1. The contribution of this chapter is a teleoperation framework that, instead

of taking reactive measures to assist the operator from collisions, assists the operator by

generating predictive long horizon trajectories that align with the operator’s directional intent

while circumventing obstacles. The resulting long-horizon trajectories enable navigation

tasks to be completed according to operator intent with reduced effort required from the

operator. The proposed approach can run online up to 10Hz on a CPU in high-density

environments.
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5.2 Problem Formulation

We build upon Chapter 3 and introduce trajectories based on sequential motion primi-

tives.

Recall, a motion primitive γ(t) is a parameterized function defined over a time interval

t ∈ [0, T ] which generates a unique sequence of states given an initial state x0 ∈ X :

γa,T : [0, T ]→ X a ∈ A, T ∈ [0,∞)

where A = R
m is the action or parameter space. The motion primitive function we will use

is first discussed in Chapter 3, Section 3.2.1.3.

The parameter space A could be constrained due to safety or feasibility. For example,

the set of parameters that are dynamically feasible for a mobile robot can be defined as

follows:

Afeas = {a ∈ A | γ
(i)
a,T (t) ≤ x(i)

max} ∀ t ∈ [0, T ] (5.1)

where the relevant i-th order derivative (e.g., acceleration) along the trajectory is upper

bounded by some known limit of the vehicle x
(i)
max. The set of parameters that are safe for a

mobile robot can be defined as follows:

Asafe = {a ∈ A | γa,T (t) ∈ Xsafe} ∀ t ∈ [0, T ] (5.2)

where Xsafe = X \ O and O is the set of obstacles. Note that Afeas and Asafe may not be

convex spaces.

Figure 5.3: Vehicle completing an obstacle avoidance maneuver with trajectories generated using motion
primitive trees, shown in the x-y plane. The three sets of trajectories successfully enable the vehicle to
complete the maneuver according to the intended direction of motion.
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Define a trajectory to be a sequence of N motion primitives:

ξ = (γ1, . . . , γN ) = (γi)
N
i=1 (5.3)

The duration of the trajectory is given by T =
∑N

i=1 Ti, where Ti is the duration of the i-th

primitive. The trajectory function is defined as:

ξ(t) = γi(t− τi−1) t ∈ [τi−1, τi) (5.4)

where τi is the cumulative duration up to primitive i. The parameters of a trajectory are

given by

α = [a1,a2, ...,aN ] ∈ R
mn. (5.5)

For a trajectory to be feasible and safe, the parameters of each motion primitive must be in

the feasible parameter set ai ∈ Afeas ∩ Asafe, i = 1, ..., N .

A cost function that evaluates a trajectory with respect to the operator’s directional

intent is given as, Ca∗(ξ), where a∗ is the operator’s desired input. The problem statement

is then as follows: Given a∗, find a trajectory ξ that minimizes the cost function with respect

to the parameters of the trajectory with n-segments in the feasible space:

min
α∈Λfeas∩Λsafe,n

Ca∗ (ξ) n ∈ N
+, (5.6)

where Λ =
∏n

i=1Ai represents the action space of a trajectory. The action space scales with

respect to the number of segments. The space of all of the number of possible segments

in each trajectory sequence, n, forms a discrete set; therefore Eq. (5.6) is a mixed integer

program unless n is fixed by choice.
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Figure 5.4: A simplified illustration of one iteration of the tree generation process (Algorithm 5). (a) The
tree contains the root node (0), and two nodes (01, 03) in the sample set. (b) From the sample set, node 03
is selected and added to the tree. (c) The set of possible successors to 03 (031, 032, 033) are evaluated. (d)
From the set of successors, the nodes leading to a collision (031) are discarded, and the others added to the
sample set. This process is repeated until a terminating condition is met.
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5.3 Approach

5.3.1 Biased Incremental Action Sampling (BIAS)

We iteratively build a tree of sequential actions that minimizes an objective as described

in Eq. 5.6. The algorithm is detailed in Algorithm 5, and a simplified illustration of one

iteration of the process is shown in Fig. 5.4.

Starting at the root node, the tree is constructed by selecting actions via weighted

sampling from the Sample Set S (the set of possible nodes for expansion). For each node

to be expanded, all known feasible actions (successors) are evaluated, and added to the

Sample Set. The set of possible actions at each step is known a priori: they are generated

by uniformly discretizing1 the continuous action space A along each parameter dimension.

Let the discretized action set of A be represented by B = {ai}
K
i=1; therefore the maximum

branching factor of the tree is K. At each iteration, the feasibility of an action ai is evaluated

by checking Eq. (5.1) and (5.2). In our implementation, safety of each action is checked

with respect to a given map representation, which is discussed in Sect. 5.4.1.

Each node η at depth D represents the sequence of parameters starting from the root

node, i.e. ηD =
(

ad
)d=D

d=0
. Therefore, the cost function C

(

ηD
)

of a node at depth D evaluates

the sequence of parameters up to ηD. The cost of each node is used to generate a weighting

of the node such that lower cost nodes maintain a higher likelihood to be sampled; e.g.,

w(η) = 1
C(η) .

The Sample Set S is a set of tuples that contains the node parameters and its associated

cost (η, w). At each iteration, J nodes are sampled from S according to their weights (Line

4). All feasible and safe children of the sampled nodes are then evaluated and added to

the Sample Set (Line 9). As elements are added, the Sample Set increases exponentially in

size thus causing this set to contain a large number of lower weighted elements. In order to

highlight the higher weighted elements, the sampling is limited to an elite set containing

the top ρ samples within the Sample Set, and those weights are passed through a softmax

function:

σ(wi) =
eβwi

∑N
j=1 e

βwj

β > 0 (5.7)

where β is a tuning parameter. This amplifies the likelihood of the higher weighted elements

being sampled. We introduce a cost bound C̄ which is updated after every iteration (Line

18). By doing so, this effectively bounds our search to the first local minima encountered.

1Instead of sampling from a uniformly discretized action set, one can sample from a non-uniform prior
over the continuous action space based on the initial state of the system. Such formulation would allow the
samples to be chosen via an informative prior, and possibly reduce the number of nodes to be evaluated.
We leave this to future work.
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Figure 5.5: Motion primitive trees generated in the x-y plane according to joystick inputs with varying
angular velocity in a cluttered environment, showing effective obstacle avoidance while adhering to the
directional intent specified by the operator. All trajectories are smooth and continuous up to snap.

5.3.2 Motion Primitive Trees

A motion primitive tree is generated once a new input is received from the operator via the

joystick, and the lowest cost trajectory is executed. The resulting tree of actions generated

using BIAS is transformed into a motion primitive tree by computing the appropriate

Algorithm 5: Biased Incremental Action Sampling

Input: Given a cost function C(ξ), a batch sampling parameter J ∈ N
+, and an initial

state x0

1 Initialize the Sample Set with the root node: S = {
(

η0, 0
)

}
2 Initialize cost bound C̄ =∞
3 while terminating condition not met do

4 Sample J = min (|S|, J) nodes from S according to their weights without replacement
5 for each sampled node ηj with depth d, j = 1, ..., J do

6 Add the sampled node ηj to the tree
7 Remove the sampled node from the Sample Set: S ← S \ {(ηj , wj)}
8 for all a ∈ B do

9 if a ∈ Afeas ∩ Asafe then

10 Generate new node η(a) =
(

ηdj ,a
)

11 Evaluate cost of node C(η)
12 if C(η) < C̄ then

13 Compute weight of node w(η)
14 Add node and its weight to the Sample Set: S ← (η, w)

15 Optional: Update cost bound: C̄ = maxs∈S C(s)
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motion primitives parameterized by the actions and an initial state. Each node η in the

tree represents a motion primitive that takes the robot from one state to another via a

time-parameterized trajectory function γ, generated by our choice of f with action a. Each

successor contains parameters that guarantee a snap-continuous trajectory from the parent

node by construction. The root node is seeded with the initial state of the system. Thus,

each sequence of nodes η with depth D is an equivalent representation of trajectory ξ with

N segments given γ, with D = N :

ηD =
(

ad
)d=D

d=0
⇐⇒ ξ = (γi(t))

i=N
i=1 (5.8)

The continuous action space A is the action space of the motion primitive parameters.

The successors to each node form a motion primitive library with the initial state as

determined by the end state of the current primitive.

The motion primitive tree becomes a set of trajectories given an initial condition. The

application of this algorithm to a directional intent function (described in Sect. 5.3.3) enables

trajectory generation for a right turning maneuver as shown in Fig. 5.3. Each multi-step

primitive trajectory, by construction, naturally becomes an extension of motion primitives

based teleoperation discussed in Chapter 3: In the worst case where every action downstream

from the one-step action set incurs a higher cost, the algorithm simply returns the one-step

motion primitive library, defaulting to the behavior of one-step teleoperation where the

operator’s selected primitive is carried out until the next iteration.

Trajectory selection policy The existence of many local minimas will necessarily require

us to terminate the algorithm once a desirable set of trajectories have been generated.

Therefore, the termination criterion can be reaching a max tree size P ; or until the Sample

Set becomes empty. The algorithm returns a set of trajectories and the vehicle executes the

minimum cost trajectory.

5.3.3 Directional Cost Formulation

We present an intent cost function that encodes the desired direction of motion, which

are used to generate motion primitive trees as shown in Fig. 5.5. Given a prediction of the

most likely input, a∗, the intent cost function can be described as follows. The cost function

compares an approximate directional vector between the trajectory ξ(t) and a one-step

motion primitive, generated using the most optimal action as given by the intent model.

Specifically, the trajectory is evaluated at its end points x0 = ξ(0), and xT = ξ(T). A

one-step motion primitive γ∗ is generated using a∗ with duration T according to Eq. (3.6),

such that γ∗(t) = γa∗,T(t). The endpoints generated by the desired motion primitive would
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be given by x∗
0 = γ(0), and x∗

T
= γ(T). The cost function is given as:

Cinputa∗(ξ) = ‖1− p · p∗‖ (5.9)

p =
xT − x0

|xT − x0|
p∗ =

x∗
T
− x∗

0
∣

∣x∗
T
− x∗

0

∣

∣

(5.10)

which shifts the dot product such that Cinput ≥ 0 and remains within [0, 2]. The most likely

input a∗, uses the most current input of the operator.

User preference and behavior heuristics We augment the intent objective with

descriptors of trajectory behavior in order to capture user preference in the qualitative shape

of the trajectory. Trajectory behavior describes how a particular trajectory is executed.

These are adjectives such as slow vs. fast or smooth vs. aggressive, which are translated to

a value-function that penalizes higher order derivatives such as velocity, acceleration and

jerk. For an (n+1)-segment trajectory comprised of motion primitives each parameterized

by actions a0,a1, ..., we define and utilize the following behavior functions:

CStraight =

n
∑

i=1

|ωi|+
n
∑

i=1

|vzi|

penalizes nonzero curvature

CSmooth =
n
∑

i=1

|ai − ai−1|

penalizes changes in curvature

CSpeed =

n
∑

i=1

1

‖vi‖2

penalizes trajectory with slow speeds

CDuration =
n
∑

i=1

1

Ti

penalizes short duration trajectories

The cost functions are linearly combined with a set of user selected weights. A visual-

ization of the effect of these cost functions is shown in Fig. 5.6.

Figure 5.6: Trajectories showing the effects of three behavioral cost functions: Cstraight (left), Csmooth

(middle), and Cduration (right). These show the effect of each cost function on the shapes of the resulting
trajectories. The effect of Cspeed is omitted as it is not intuitive to visualize in a path.

5.4 Experiments and Results

The proposed method is tested in simulation using a high-fidelity hexarotor model in

various density random forest environments using a combination of the intent and behavior
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Table 5.1: Trajectory parameters: The 2D action space includes ω and T , and the 3D action space includes
ω, T , and vz.

Parameter Min Max Num. discretizations

Duration T 0.2s 1.5s 5
Angular vel. ω 0.75rad/s 0.75rad/s 15
Z vel. vz -0.75m/s 0.75m/s 3

Total size of the motion primitive library 75 (2D), 225 (3D)
Table 5.2: Cost parameters for random forest navigation

Cost function weights Sampling Parameters

wsmooth 0.3 Softmax parameter β 0.5
wstraight 0.1 Num. nodes sampled J 2
wduration 0.6 Tree size (Num. nodes P ) 100
wspeed 0.3 Elite set size ρ 500
wintent 1.8

cost functions as described in Sect. 5.3.3.

5.4.1 Implementation

The proposed method is implemented in C++ on a CPU (Intel Core 2.20GHz i7-8750H

CPU), with 16GB of RAM. 12 threads are allocated in order to support parallel evaluation

of the discretized actions (Lines 8 - 17 in Algorithm 1).

We use a global map representation using both a KD-Tree based voxel representation,

as well as a signed distance field (SDF) representation. KD-Tree is efficient for a local map

representation [19]; However, SDF provide faster queries for global map since it can be

processed offline. The method can be readily adapted to local maps instead of global maps.

Local maps generated using limited range sensors may require limiting the maximum tree

depth, such that the trajectories are within the known map.

Three random forest environments are used in this experiment with varying sparsity,

each with size 60m×30m×10m. The sparse, medium, and dense random tree forest contains

approximately 30, 70, and 120 pillars respectively. The task is as follows: Navigate the

simulated hexarotor vehicle from one end of the environment to the other. The operator can

choose to take any path they wish to complete the task. The operator is given a third-person

follower view of the vehicle which is ensured to be occlusion free such that the operator

remains within line-of-sight of the vehicle.

The motion primitive parameters are fixed for all trials (Table 5.1). The linear velocity

is directly controlled by the operator using one of the axis of the joystick during operation

with the maximum velocity capped at 2m/s. The algorithm-associated parameters are given

in Table 5.2. The simulated vehicle has a radius of 0.6m with a collision radius set constant

at 0.1m. The discretization size for both KDTree and SDF is fixed at 0.1m.
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Figure 5.7: Some resulting odometry using reactive motion primitives based teleoperation and teleoperation
using the proposed method in sparse (top), medium (middle), and dense (bottom) enviroments for three
trials each. The colorbar to the right indicate the pillar heights in meters. Both methods complete sparse
environments equally, however the proposed method results in qualitatively smoother trajectories in the
dense scenario. Data from these trials are summarized in Table 5.5.

5.4.2 Results

Timing Results. The per-node timing evaluation is provided in Table 5.3. The cost

evaluation per node for all cost functions averages 0.0168ms. The collision check time in

the densest environment for both SDF and KD-Tree representations are on the order of

10−3∼10−2ms. The collision check time should reduce significantly if using a local map.

The timing results for the trajectory generation process are shown in Table 5.4. Trajectory

generation for a 2D tree takes approximately 113.12ms for an average depth of 5, and 300ms

for a 3D tree with an average depth of 4. Approximately 9785 and 28906 nodes are evaluated

to generate the 2D and 3D tree respectively. To contextualize our result, note that naively

generating a fixed size 2D tree with depth 5 and 3D tree with depth 4 would result in

755 = 2.373T and 2254 = 2.562B nodes respectively.
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Table 5.3: Timing results per node (data from 2.4M node evaluations with the densest random forest
environment)

Per node Time

Cost Evaluation 0.0168± 0.0664 ms

Collision Check with SDF 0.00269± 0.00421 ms
Collision Check with KDTree 0.01351± 0.06001 ms

Total with SDF 0.0230± 0.0804 ms
Total with KDTree 0.0320± 0.0694 ms

Table 5.4: Timing and size data per tree (data from 100 trees generated in the densest random forest
environment)

Time 2D (75 children) 3D (225 children)

Generation 113.12± 91.04 ms 299.78± 88.46 ms
Selection 1.14± 0.95 ms 1.73± 7.01 ms
Generation + Selection 116.44± 91.40 ms 315.57± 61.9 ms

Num. nodes processed 9785± 1499 28906± 4584
Num. traj per tree 56± 42 93± 21

Num. iter. per tree 42± 25 61± 16
Average depth of tree 5± 1 4± 1

2D trees refer to motion primitive trees generated in the x-y plane.
3D trees refer to those generated in the euclidean space.

Task completion results We compare the proposed method with respect to the previous

reactive, one-step teleoperation proposed in [19]. The reactive method parameterizes the

operator’s control input and generates a single motion primitive. Both methods are evaluated

in the sparse, medium and dense random forest environments with five trials each.

The key metric we evaluate is the number of joystick inputs received to complete each

task, which represents the effort of the operator. This metric is critical to evaluating the

operator engagement with the system during teleoperation: If the number of joystick inputs

is high, it indicates that the operator has to frequently engage the system to control the

vehicle. If the operator does not need to engage as much with the system as much over

time, then this implies that the vehicle is following the operator’s intended trajectory and

therefore the operator does not feel the need to control the vehicle. We observe the task

completion time as well as the smoothness of the trajectory via the jerk integral. The results

are reported in Table 5.5. A subset of the resulting trajectories are shown in Fig. 5.7.

The number of joystick inputs of each run ranges from ∼44 control inputs for the sparse

environment to ∼58 control inputs for the densest environment. Contrast this to the reactive

method, which utilized ∼192 control inputs for the sparse case, and up to ∼421 control

inputs for the densest environment. In the sparse enviroment, the operator has to engage

less due to the lack of obstacles. But in the dense environment, the number of inputs
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rise significantly for the reactive method due to the frequent encountering of obstacles

and difficult structures that causes the operator to be highly engaged. The frequency of

engagement is significantly reduced using the proposed multi-step method, indicating a

reduction in effort required to achieve the same navigation task. Only 25% control inputs

are required for the sparse environment, and the number of inputs only increased by around

15-20 for the densest environment. This represents a significant reduction operator’s effort

when navigating through difficult scenarios such as narrow gaps shown in Fig. 5.1.

Lastly, we observe that the completion time for each of the tasks are similar. We also

observe that the generated trajectories exhibit a lower jerk profile throughout the task,

which indicates that the proposed method generates smoother trajectories than the reactive

teleoperation method.

Table 5.5: Comparison of the different density enviroments

Approach Sparse Medium Dense

Time to completion (s)

MP (single-step) 38.84± 1.08 37.06± 0.50 37.95± 1.91
MPT via BIAS (multi-step, proposed) 39.45± 1.43 36.40± 1.99 37.55± 2.34

Jerk Integral (m2/s3)

MP (single-step) 28.41± 2.88 26.72± 4.30 50.14± 7.38
MPT via BIAS (multi-step, proposed) 18.96± 5.05 25.32± 4.32 33.75± 2.77

Number of joystick inputs received to complete the trial

MP (single-step) 192± 27 147± 45 421± 67
MPT via BIAS (multi-step, proposed) 44± 12 38± 9 58± 10

5.5 Discussion

This chapter began the first introduction of trajectory-based teleoperation with active

collision avoidance by generating smooth trajectories that optimize directional intent objec-

tives. Instead of using optimization based trajectory generation methods, we present a novel

trajectory generation for teleoperation by iteratively constructing a tree of sequential actions

using BIAS. BIAS generates sequential motion primitives following an intent objective,

which balances the directional objective of the operator and behavioral descriptors that

customize the shape of the trajectories. The method is evaluated on navigation tasks in

sparse, medium and dense random forest environments. We show a significant reduction in

required operator effort to complete the task using the proposed method as compared to

one-step reactive teleoperation.

While the local trajectories removes the need for the operator to specify exact paths

around obstacles, it does not consider the operator’s higher level intention in terms of

longer term paths. In the next chapter, we introduce a framework that allows the explicit

incorporation of the operator’s intended path.
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Chapter

6

Hierarchical HITL Planning

In long duration navigation, the operator’s intention is to locally avoid obstacles while

planning long-horizon paths in order to complete the navigation task. This chapter extends

beyond the work in the last chapter and presents a hierarchical teleoperation framework

that captures these characteristics of intention and generates trajectories that are locally

safe and follow the operator’s global plan. The hierarchical teleoperation framework consists

of 1) a global path generator which encapsulates the intended direction of the operator,

2) local trajectory generation that circumvents obstacles near the vehicle’s vicinity while

following the global path, and 3) a safety monitoring system to avoid possible imminent

collisions. By removing the operator from teleoperation using dynamic-level control input

and instead having inputs inform trajectory generation, we are able to significantly improve

the performance of task completion while reducing the operator’s engagement around dense

obstacles.

The hierarchical teleoperation framework is showcased in navigation tasks in a random

forest environment and a high-clutter warehouse characterized by narrow gaps and dense

obstacles. With our method, we maintain consistent high speed throughout the task with

smooth jerk profiles, decreased time to completion, and significantly reduced operator

engagement.

This chapter first appears in [22].
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Current trajectory Selected next trajectory

Candidate trajectoriesOdometry of vehicle
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Straight line

Corner

Operator input

Figure 6.1: Illustrations for the proposed hierarchical teleoperation framework in two example scenarios.
Operator’s intention, reflected in the global path, guides local trajectory generation. Top: the vehicle avoids
obstacles following a linear motion. Bottom: The intention to round a corner is reflected in the global path,
which triggers a local trajectory regeneration.

6.1 Introduction

In human-robot collaboration, intention can be represented in various ways. Notably

they can be represented either as a goal [7–9] in the state space (e.g., a door, an address,

a specific object), or they can be represented as a path [10–12] (e.g., a sequence of streets

to take to reach an address). However, the operator’s intention can also be represented at

a lower level, either as a specific motion [13, 14] (e.g., a left turn, a right turn or perform

an in-place yaw), or as a system set-point [15, 16] (e.g., drive a vehicle at a fixed velocity).

These various levels of intention are dependent on the context and scenario.

Human-in-the-loop control in unstructured environments for tasks such as navigation or

exploration requires operators to 1) maneuver the vehicle with safety and dynamic feasibility

to avoid collisions and 2) plan global paths that achieve the objective. In critical situations

where the vehicle is traveling fast through dense obstacles, fast reactivity and high-frequency

engagement is required to mitigate collisions. The operator must balance generating reactive

motions that evade obstacles, and long-term path planning in order for task completion.

The operator’s intention is characterized according to the above requirements: to locally

avoid obstacles while generating dynamically safe motions, and planning long-horizon paths

for task completion. Typically, a global path refers to a path from the starting location to a

final goal location. However, it is not often that a global goal can be clearly defined during

such navigation tasks. Therefore, we represent and interpret the operator’s intention as

the global path, and the local trajectory can be interpreted as a set of sequential actions to
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Figure 6.2: A sequence of the hierarchical teleoperation framework in action in the random forest environment.
In this snapshot, the global trajectory (in grey) represents a forward linear motion. The local trajectory
generator generates candidate trajectories (in magenta). The vehicle (in blue) follows a chosen trajectory
and successfully passes through a narrow gap and returns to follow the global path.

satisfy the operator’s intention. Consequently, the global path is therefore longer in horizon

as compared to the the local trajectory. An illustration of this is shown in Fig. 6.4.

This chapter presents a hierarchical human-in-the-loop control framework that captures

the instrinsic nature of human intenion for navigation in unstructured environments, and

generates safe trajectories accordingly, removing the operator from the responsibilities of

safety, reactivity and dynamic feasibility. The proposed framework generates predictive

trajectories that utilize the operator’s input to infer a global navigational direction, and

local trajectories that are both locally safe and and follow the intended direction, as shown

in Fig. 6.1. Our proposed method allows the operator to remain in control of the vehicle

while significantly reducing operator engagement and maintaining consistent high speeds,

especially during critical navigation scenarios, as shown in Fig. 6.2 and Fig. 6.3.

The hierarchical framework consists of three components: 1) global path generation

using a directional intention model informed by the operator’s inputs; 2) a local trajectory

generator that evaluates the current joystick input and generates snap-continuous trajectories
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Figure 6.3: Snapshot of the hierarchical teleoperation framework in action in the warehouse environment.
Top left: An overhead view of the resulting odometry (in yellow) starting near the entryway of the warehouse
and exploring clockwise. Bottom left: Highlighting a section of the trial where the vehicle encounters two
difficult scenarios: (A) through a partially collapsed shelf and (B) return to the origin by going through two
shelves with low clearance. In those two scenarios, the global guiding path (in grey) allows generation of
candidate local trajectories (in magenta). The selected trajectory (in blue) successfully leads the vehicle
through narrow gaps in the highlighted scenarios.

that circumvent obstacles while following the global path; and lastly, 3) a safety monitoring

system that continuously monitors collision safety of the vehicle. The inputs are processed

such that linear motions such as yaw and stop are directly executed while other inputs

(representing navigation) inform the trajectory generation process. This allows the operator

to retain natural control of vehicle with imperceptible vehicle performance while reducing

the number of inputs required of the operator in order to achieve task. The application

of the proposed method to human-in-the-loop control allows teleoperation to move from an

operator-controlled vehicle to an operator-informed, predictive trajectory generation model,

such that the trajectories naturally complete the operator’s intended motion. The hierarchical

design of the proposed framework naturally corresponds to the spectrum of intentions that

would otherwise require high task-switching costs on the operator, prioritizing between

safety and task completion.

We test the proposed teleoperation frameworks in two types of tasks: Navigating a

quadrotor in a random forest environment where the operator is asked to follow a straight

line, and navigating in a cluttered warehouse characterized by narrow gaps and irregular free

space formed by collapsed shelves. We show that with our method, we are able to maintain

consistent high speed throughout the task with smoother jerk profiles, with a significant

engagement reduction as compared to single-step trajectory-based teleoperation.
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Complete global plan from start to end

ObstaclesStart End

(a) Complete global plan from a start configura-
tion to an end configuration

ObstaclesStart End

Finite horizon global path

Complete global plan from start to end

(b) HITL representation with unknown goal: Fi-
nite horizon global path

Figure 6.4: Illustration of a global path for HITL: A global path typically represents a complete plan from
a start configuration to an end goal configuration. For HITL with an unknown goal specification, a finite
horizon path can be used instead.

6.2 Approach

We now introduce the hierarchical teleoperation architecture, as shown in Fig. 6.5. The

proposed teleoperation system is composed of a global planning component and and a local

trajectory generator, which is supplemented by a collision safety monitoring system. The

operator’s inputs are assumed to come from a continuous stream of values via a joystick or

gamepad.

The current architecture assumes the existence of a local map representation for the

purposes of collision checking. For this paper, we utilize a KD-Tree based local map

representation [19]. The existence of various map representations can be readily incorporated

into this framework.

6.2.1 Preliminaries

We build on definitions first introduced in Chapter 3 and Chapter 5.

Recall, a trajectory is a time-parameterized function ξ(t), defined over a time interval

t ∈ [0, T ] that maps a given time t to a state xt. Operator’s inputs are given in the form of

a=[vx, ω, vz]
⊤ via a joystick, where vx∈Vx is the linear velocity, ω∈Ω is the angular velocity,

and vz∈Vz is the z-velocity. A motion primitive γ(t) is a parameterized trajectory function

which generates a unique sequence of states given an initial state x0 ∈ X and an input
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Figure 6.5: System diagram of the proposed framework. The teleoperation framework takes in a continuous
stream of inputs from an user-operated joystick, and generates a trajectory to be sent to the controller.
Inputs are processed and sent to the planning pipeline. The safety monitoring system intervenes when the
vehicle is about to face an imminent crash.

a ∈ A according to specific dynamics. A sequence of N motion primitives is given by:

ξ = (γ1, . . . , γN ) = (γi)
N
i=1 (6.1)

The total duration of the motion primitive sequence is given by T =
∑N

i=1 Ti, where Ti is the

duration of the ith primitive. The trajectory function for a sequence of motion primitives is

defined as:

ξ(t) = γi(t− τi−1) t ∈ [τi−1, τi) (6.2)

where τi is the cumulative duration up to primitive i. Note that, given the formulation of

each of the motion primitives, the endpoint continuity is guaranteed up to snap (see Eq. 3.6).

Therefore, the trajectory formed by sequential motion primitives ξ(t) will be continuous up

to snap.

6.2.2 User Input Processing

Inputs from the operator are received as a continuous stream of joystick values around

200Hz. A novel input is defined as an input that leads a zero-order hold over a horizon

of at least 100ms. Only novel inputs are retained and the rest discarded; hence the term
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Figure 6.6: Logic flow diagram for the proposed hierarchical teleoperation framework during navigation-type
tasks.

“novel inputs” is used interchangeably with “operator inputs” or “inputs”. In order to allow

operators to remain in control, inputs are categorized as pure yaw, zero input, or navigation.

For pure yaw and zero inputs, a direct linear trajectory is sent to the controller bypassing

the rest of the system, as they do not correspond to the task of navigation. The navigation

inputs are passed onto the hierarchical planning framework.

6.2.3 Global Planning

The global layer generates a path that reflects a long horizon motion that the operator

intends to achieve in the absence of obstacles. We utilize a simplified intention model based

on previous navigational inputs as follows: First, the navigational inputs are filtered to

produce a likely global input aG at time t given current input at:

aG = λaG + (1− λ)at 0 < λ < 1 (6.3)

Then, a global trajectory ξG is generated according to Eq. (3.3) with a duration of T. As

the global path is only used for guidance, any higher order dynamics of the trajectory can

be safely ignored. For our experiments, we choose a horizon of T=10s and λ=0.8.

6.2.4 Local Trajectory Generation

We generate local trajectories that follow the underlying global trajectory while avoiding

obstacles. This process uses the operator’s input and the global path to generate trajectories

that are most closely bound to the operator’s intention, while maximizing operator control.

The logic flow for this process is summarized in Fig. 6.6.
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6.2.4.1 Motion Primitive Parameterization

The operator’s input is first parameterized as a single-step snap-continuous motion

primitive following Eq. 3.6.

The motion primitive is checked against collisions with respect to the map representation.

If the motion primitive is in collision, then we utilize a longer-horizon trajectory generation

process as described in the next section.

6.2.4.2 Multi-Step Trajectory Generation

In the case that a single-step motion primitive, which is an exact parameterization of

the operator’s action in the state space, leads to a collision, it is necessary to generate a

trajectory that avoids the obstacle in its immediate environment. To do so, we generate a

candidate set of trajectories by constructing a motion primitive tree using Biased Incremental

Action Sampling (BIAS), introduced in Chapter 5, in given a local map representation.

Recall, BIAS iteratively builds a tree of sequential motion primitives that minimizes

an objective. The objective is a weighted combination of the local intended direction and

behavior heuristic cost functions. The local intended direction cost function is as follows:

The cost function is given as:

Cinputa
(ξ) = ‖1− p · p∗‖ (6.4)

p =
ξ(T)− ξ(0)

|ξ(T)− ξ(0)|
p∗ =

γa(T)− γa(0)

|γa(T)− γa(0)|
(6.5)

where ξ(τ) is the multi-step motion primitive trajectory evaluated at time τ , and γa(τ) is

the single-step motion primitive parameterized by the operator’s given input a evaluated at

time τ . Therefore, γ is exactly the motion primitive in collision as generated in the previous

section, so as to maximize adherance to the operator’s intended input.

6.2.4.3 Trajectory Selection

Given a set of candidate trajectories, we select the trajectory to be executed by the

vehicle. We aim to first maximize smoothness in transition from the current trajectory, as

well as minimize its closeness to the global guiding trajectory. To do so, we introduce a

selection cost function that evaluates each trajectory by its closeness to both the current local

trajectory and the global path by evaluating the discrete Fréchet distance δdF [111, 112].

We provide a brief definition below.

Consider a discrete sampling of two continous functions f and g that forms two polygonal

curves P = {f1, f2, ..., fn} and Q = {g1, g2, ..., gm} which are sequences of n and m discrete

points, respectively. An order-preserving, complete correspondence between P and Q is a

78



Chapter 6. Hierarchical HITL Planning

BA B

C

CA

Candidate trajectoriesCurrent trajectoryGlobal guide path DFD illustration 
candidate to global path

DFD illustration 
candidate to current traj

Figure 6.7: Illustration of new trajectory selection based on weighted discrete Fréchet distance (DFD). Each
candidate trajectory is sampled and DFD is computed between the candidate and global path and local
trajectory. In this example, candidate B scores the lowest DFD and is sent to the controller.

pair (α, β) of discrete monotone reparameterizations 1 of α from {1, ..., k} to {1, ..., n} and

of β from {1, ..., k} to {1, ...,m}. The discrete Fréchet distance of P and Q is given by:

δdF (f, g) := min
(α,β)

max
i∈[1,k]

d(fα(i), gβ(i)) (6.6)

where (α, β) ranges over all order-preserving complete correspondences between P and Q.

Therefore, the Fréchet distance for a pair of time parameterized trajectories ξ, Φ is given by

δdF (ξ, Φ) := min
(α,β)

max
i∈[1,k]

d(ξα(i), Φβ(i)) (6.7)

where ξi = ξ(i ·∆t) for fixed ∆t sampling of trajectory ξ.

The trajectory selection is then as follows: Given the current local trajectory ξL and the

guiding global trajectory ξG, and a candidate set of trajectories {ξ},

ξ∗ = min
ξ∈{ξ}

wLδdF (ξ, ξL) + wGδdF (ξ, ξG) (6.8)

An illustration of the trajectory selection process is shown in Fig. 6.7.

6.2.5 Safety Monitoring

6.2.5.1 Trajectory Safety

The size of the local map is dependent on the accuracy range of the sensors in exploring

unknown environments. As such, this range is sometimes fairly limited. Therefore, we treat

the unknown space as free space during trajectory generation with the trajectories possibly

extending beyond the size of the local map. As the vehicle moves, the local map is being

updated on a rolling basis with incoming new sensor scans. Therefore, the current trajectory

is continually checked against the updated map with a new trajectory generated in the event

of a possible collision.

1A discrete monotone reparameterization α from {1, ..., k} to {1, ..., l} is defined as a non-decreasing
function α : {1, ..., k} → {1, ..., l} for integers k ≥ l ≥ 1, with α(1) = 1, α(k) = l, and α(i+1) ≤ α(i)+1 ∀ i =
1, ..., k − 1.
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Figure 6.8: Illustration of imminent collision monitoring and safe stop. (A) Initial assessment: possible
collision points are sampled from nearby obstacles and vectors to collision are assessed. If high concern
vectors exist, stopping trajectory generation begins. (B) Initial grid of escape points with costs computed
and colliding points discarded (C) A stratified sampling method is used to downsample the possible escape
points, with candidate trajectories generated. Dynamically infeasible candidate trajectories are discarded.
(D) Lowest cost, dynamically feasible trajectory is selected and sent to the controller.

6.2.5.2 Imminent Collision Monitoring

To mitigate situations where the operator leads the vehicle into state of collision or the

vehicle reaches a point where no trajectories are feasible, a collision checking algorithm

is implemented alongside the planning pipeline. The imminent collision checking system

continuously monitors vehicle safety, and plans a safe, dynamically feasible trajectory that

leads the vehicle to a stop within the observed map.

To determine whether an imminent collision will occur given the immediate vehicle

surroundings, we first determine the set of possible collision points by evaluating the

normalized vector projection between each of the closest obstacle locations and the vehicle

velocity:

proj(x,p) =

〈

ẋ

‖ẋ‖
,

p− x

‖p− x‖

〉

=

〈

ẋ

‖ẋ‖
,

r

‖r‖

〉

Where x, ẋ are the vehicle position and velocity respectively, and the vector to an obstacle

point p is r = p − x. The points away from the direction of motion proj(x,p) < 0 can

be discarded immediately. Then, we compute a combined stop criterion on the velocity

magnitude, distance of the obstacle to the vehicle and the angle offset of the obstacle on a

set of closest obstacle points {p}:

Cstop(x,p) = w1|ẋ|+ w2|r|+ w3 arccos(proj(x,p))

if proj(x,p) >= 0

An imminent stop trajectory is issued if for any obstacle point p, Cstop(x,p) < β. In

our experiments, β, w1, w2 and w3 are experimentally determined to be 0.9, 0.2, 0.8, 1.2
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respectively. To generate an imminent stop trajectory that is guaranteed safe, an initial

group of escape points, {e}, is sampled along the direction of motion using stratified sampling

over a uniform grid optimizing for points near the vehicle’s original heading via the following

cost:

Cescape(x, e) = w1q + w2d

Where q = |(x− e− ((x− e) · ˆ̇x)ˆ̇x| is the shortest distance from the escape point e to the

line l(s) = ˆ̇xs+x in the direction of the velocity vector passing through the vehicle position,

and d is the distance from the the escape point to its nearest obstacle. The stratified method

guarantees a set of points with both high and low costs such that in the event low cost

trajectories are not dynamically feasible, we are able to sacrifice cost for dynamic feasibility.

A set of stopping trajectories are then generated to the resulting sampled points and checked

for safety and dynamic feasibility via an acceleration bound along the trajectory s.t. ẍ < ᾱ.

For our experiments, we select ᾱ = 10m/s2. The resulting set of safe, dynamically feasible

trajectories with the lowest Cescape value is chosen. An illustration of the imminent collision

checking system is shown in Fig. 6.8.

6.3 Experiments and Results

We evaluate our method in a simulated random forest environment and in a dense

warehouse environment, where the operator is asked to perform a navigation task by

following a global path described to the operator. The operator is given a third-person

follower view of the vehicle, which may introduce occlusions depending on the complexity of

the environment and any overhanging objects. Each task is repeated with five trials.

The simulated vehicle is an exact model of an in-house developed quadrotor. The vehicle

weighs 1.14kg, and has an effective diameter of 30.6cm. The simulated experiments are

performed with a CPU (Intel Core 2.20GHz i7-8750H CPU), with 16GB of RAM.

The proposed method is compared to direct motion primitive teleoperation (MP) [19],

which is a one-step parameterization of the operator’s action input, as well as multi-step

trajectory generation via motion primitive trees (MPT) [113]. All three methods are

equipped with the imminent collision monitoring system in order to avoid possible crashes.

An example trial of the collision monitoring and prevention in the warehouse scenario is

shown in Fig. 6.9. The stopping trajectory quicky stops vehicle before collision and allows

the vehicle to escape.

6.3.1 Metrics

We evaluate our experiments with the following criteria: 1) time to completion, 2)

smoothness by evaluation of the jerk integral, and 3) operator engagement by evaluation

of the number of novel inputs over the fixed task. Further, for the warehouse scenario, we

additionally evaluate 4) the average velocity.
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Figure 6.9: Trial run in the warehouse environment with imminent collision checking enabled. Left: Vehicle
odometry with queried obstacles. Locations A, B, C indicate where stopping trajectories were issued
corresponding with the left plot. Right: Stopping trajectories are issued when stop cost drops below a
threshold, ensuring that the vehicle is safe. The operator recovers the vehicle with an in-place yaw before
normal flight is resumed.

Figure 6.10: Sequence of the passage through the collapsed shelf, from left to right. Trajectory currently
following (in blue) leads to a collision, and trajectory generation is triggered resulting in candidate trajectories
(in magenta) being generated. Light grey trajectory highlights the global path that guides the trajectory
generation process, which adapts over time as the vehicle moves.

We expect the proposed method allows smooth navigation without the need to frequently

stop due to possible collisions. Lastly, we focus on the key metric of operator engagement

by evaluation of the number of novel inputs to complete a task. If the number of new inputs

is high, this indicates that operators feel the need to control the vehicle in order to correct

its course. Alternatively, if the number of new inputs is low, it implies that the vehicle is

following course on its intended trajectory and does not require correction to its motion.

6.3.2 Random Forest

The random forest environment contains 120 various-height pillars in a 60m×30m×10m

volume. The operator is asked to navigate through the random forest environment following

a straight line path that passes through many pillars. The vehicle begins on one side of the

random forest, and the task is marked complete as soon as the vehicle reaches the other

side of the random forest.

The results are tabulated in Table 6.1. Overall, the tasks are complete within reasonable

time. We observe that the proposed method maintains a jerk integral of 25m2/s3 for all three

density environments, whereas previous methods show an increase in jerkiness depending

on the density. We also observe a significant decrease in the number of joystick inputs to
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Table 6.1: Results for three different density random forest environments

Approach Sparse Medium Dense

Time to completion (s)

MP (single-step) 38.84± 1.08 37.06± 0.50 37.95± 1.91
MPT (multi-step) 39.45± 1.43 36.40± 1.99 37.55± 2.34
Hierarchical (proposed) 38.10 ± 3.96 33.4 ± 1.44 34.73 ± 1.35

Jerk Integral (m2/s3)

MP (single-step) 28.41± 2.88 26.72± 4.30 50.14± 7.38
MPT (multi-step) 18.96± 5.05 25.32± 4.32 33.75± 2.77
Hierarchical (proposed) 25.10 ± 18.10 23.12 ± 10.42 25.94 ± 7.96

Number of operator inputs to complete the trial

MP (single-step) 192± 27 147± 45 421± 67
MPT (multi-step) 44± 12 38± 9 58± 10
Hierarchical (proposed) 21 ± 12 27 ± 12 35 ± 10

complete the trial: the proposed method shows a 89%, 82%, 92% reduction from the baseline

motion primitive method for the sparse, medium and dense environments respectively. We

also observe that the number of inputs required to complete the random forest environment

remains constant, regardless of the density of the environment as shown in Fig. 6.11. For the

single-step method, the number of inputs increases significantly in the dense environment.

However, for trajectory-based methods, this is reduced as the trajectories allows the vehicle

to maneuver through high clutter areas without frequent operator engagement.

Table 6.2: Results for the warehouse environment

Approach Distance (m) Duration (s) Avg. Vel. (m/s)

MP (single-step) 82.126± 0.92 47.778± 0.503 1.772± 0.041
MPT (multi-step) 85.07± 3.95 59.73± 3.23 1.48± 0.08
Hierarchical (proposed) 80.67 ± 4.63 44.85 ± 0.93 1.85 ± 0.04

Approach Jerk integral (m2/s3) Num. Inputs

MP (single-step) 47.475± 21.328 175± 30
MPT (multi-step) 78.21± 11.72 77± 19
Hierarchical (proposed) 31.19 ± 6.81 64 ± 6

6.3.3 Warehouse

The warehouse environment is a large room with dimensions of 44.81m×22.17m×11m.

The room contains three rows of industrial shelves, with a large shelf partially collapsed

over and scattered objects surrounding the collapsed shelf, as highlighted in Fig. 6.3. The

operator is asked to navigate in the warehouse following a rectangular path and through the

collapsed shelf, which has a maximum clearance of 0.6m, and return to approximately close
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Figure 6.11: Number of operator inputs as a function of the environment density for the random forest
scenario, visualized. The number of inputs required to complete the task remains constant for the proposed
method regardless of the density of the environment.

to the origin, which would require a narrow pass through between two horizontal shelves.

The task is marked complete as soon as the vehicle completes the desired pathway and

reaches within 1m of the origin. The difficulty of this experiments is highlighted in the high

density clutter near the shelves and changes in direction, as shown in Fig. 6.10.

The results are tabulated in Table 6.2. We highlight that while all three method allows

the operator to safely complete the task, the proposed hierarchical teleoperation method is

able to do so with 63% and 17% less number of inputs, which is a significant reduction of

operator engagement. The single-step and multi-step requires on avg. 175 and 77 inputs

respectively, whereas the proposed method requires only 64.

While the multi-step method is comparable, the multi-step method takes 15 seconds

longer to complete the task than the proposed method for the approximately same distance

travelled with a reduced average velocity of 1.48m/s, compared to the proposed method’s

1.85m/s. This is due to the fact that the multi-step optimizes for finite-horizon navigation;

a rapid direction change would require the vehicle to slow down significantly to turn the

corner, and then speed up.

The single-step method performs comparatively to the proposed method in terms of

task completion duration and average velocity. However, we are able to achieve the same

level of performance with a 63% reduction in the number of inputs required.
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6.4 Discussion

This chapter presents a hierarchical teleoperation framework for mobile robot navigation

in unstructured environments, informed by the operator’s intention. The proposed method

is demonstrated in teleoperation tasks navigating in densely cluttered random forest and

warehouse environments characterized by narrow gaps and unstructured free space. The

proposed method completed the navigation task with consistently high average speeds while

requiring the least operator engagement.

The hierarchical teleoperation framework can be readily extended in a few ways. The

hierarchical formulation of the global and local planning allows a natural extension to

interface with global and local map representations, such that the global plan incorporates

environment features. Second, a more sophisticated operator intention model can be used

to inform the trajectory generation process. In the next chapter, we discuss incorporating

navigation graphs as global plans and utilizing them to guide local trajectory generation.
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Chapter

7

Continuous Dynamic Autonomy via Path

Prediction on Semantic Topological Maps

Dynamic autonomy has been introduced to allocate control between human control and

robot autonomy. However, dynamic autonomy has primarily been employed in a discrete

way, where hand-off between the human and fully autonomous operation is clearly marked

by a distinct event. Discrete hand-offs in continuous settings such as driving has shown to

be destabilizing to the human-robot system.

We propose a continuous dynamic autonomy framework for navigation, such that the

transition between human control and robot is imperceptible. Under continuous dynamic

autonomy, control is fluidly allocated between the human and robot during operation.

The last chapter utilized a simple projection model akin to Constant Velocity Model

(CVM) or Average Velocity Model (AVM) to model the global path. These models has

been shown to outperform more complex, state-of-the-art models in single-agent motion

prediction [114]. However, to be able to perform complex predictions about motions in

constrained environments, these models fail to consider the obstacles and the constraints on

traversability they impose. This chapter discusses incorporating the environment context

via a semantically topological navigation graph to achieve continuous dynamic autonomy.
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7.1 Introduction

Dynamic autonomy has been introduced to allocate control between the human vs.

robot autonomy. In continuous settings such as navigation, the most efficient framework of

dynamic autonomy should maximize the strengths of the human and robot wherever possible,

such that the control of the robot fluidly switch between the human and robot autonomy

depending on the intention given the environment context. However, dynamic autonomy

has primarily been employed in a discrete way, where hand-off between the human and

fully autonomous operation is clearly marked by a distinct event. The interaction, from

the perspective of the human, is discrete, as marked hand-over from autonomy to human’s

input; the control reference, from the perspective of the robot, is also discrete, as the control

input coming from the human is often discontinuous from the autonomy control input.

We refer to this as a discrete-interaction, discrete-control scenario. Discrete hand-offs in

continuous settings such as driving has shown to be destabilizing to the human-robot system

as sudden changes introduce discontinuities in the control reference. We propose a novel

human-in-the-loop navigation framework with continuous dynamic autonomy such that

human-robot maintains continuity in the human interaction (continuous-interaction) and

the reference trajectory for the robot. (continuous-control) (Fig. 7.1). Depending on the

environment context and human’s intention, the autonomy of the robot is dynamically

allocated, ranging from operator’s input-driven to fully autonomous trajectory generation.

Our method is driven by two key principles: 1) Incorporate the environment information

as a contextual prior for the human’s decision making during navigation and 2) Ensure

continuous hand-over between the human and robot and continuous trajectory generation

for smooth control references.

We return to the two example scenarios first introduced in Chapter 1, Section 1.1, shown

in Fig. 7.2. The first task is to perform search and rescue in a wooded area with rough terrain

using an all-terrain vehicle (ATV). The second task is a search and inspect operation in a

potentially hazardous warehouse using an MAV to identify potentially dangerous objects

of interest. In both of these cases, some partial information about the environment is

available: Satellite imagery provides an approximate map of the possible paths that the

ATV could traverse. However, this information is imperfect ; it is not an absolute and precise

representation of the traversability conditions. Unpredictable obstacles at the ground level

such as fallen trees lead to changes to traversability, in addition to smaller arterial pathways

that may be unobservable via satellites. Similarly with the warehouse, blueprints provides

detailed information of the warehouse in its original state, but do not include changes

such as collapsed shelves and additional objects. Strictly using imperfect map information

for navigation is infeasible for fully autonomous navigation systems. However, the partial

availability of map information provides rich, contextual information about the environment

that could assist humans within a human-in-the-loop context. This information is especially

informative regarding the operator’s intentions, especially in constrained environments where
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Figure 7.1: Discrete dynamic autonomy is highlighted by distinct hand-offs between human and robot. We
propose the idea of continuous dynamic autonomy, where assistance is provided as needed and does not
require explicit communication and hand-off between human and robot.

the set of paths are limited.

In constrained environments, the set of paths in the environment that the robot can

Figure 7.2: Motivating scenarios for human-in-the-loop navigation. The example navigation tasks on the left
follow a simplified task structure: navigate and identify/search/inspect along the path, and return to the
start. Continuous dynamic autonomy seeks to assist teleoperation in these scenarios without well-defined
goals.
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undertake are enumerable and distinct. These set of paths form a set of homotopic classes that

represent certain topologies of the environment, such that the topologies are “semantically

meaningful”, i.e., they represent traversable navigation routes. Thus, the traversability of

the environment can be encoded with a navigation graph that represents the connectivity

of free space. Once the routes are determined as a function of the environment structure,

additional rich details about the environment does not necessarily contribute to navigation

decisions. Therefore, the environment information for navigation purposes can be succinctly

condensed into a semantically representative topological navigation map for decision making.

This observation gives rise to a key insight: the role of the human in HITL navigation

in constrained environments can be reduced to selecting from a set of discrete, traversable

paths. By incorporating the environment context as a semantically topological navigation

graph, the robot’s autonomy can be further increased by predicting the path that the human

intends to follow. The intended global path prediction can be formulated by updating beliefs

about the set of discrete, distinctive paths from the navigation graph as the robot moves.

In certain scenarios where the human provides an indicative input that deviates from the

predictions, control of trajectory generation is handed over smoothly to the human operator

until autonomous trajectories following an updated intended path can be established. The

outcome is that the transition between human control and robot is imperceptible.

This chapter discusses continuous dynamic autonomy in a hierarchical HITL framework

by generating path predictions on a semantically topological navigation graph and discusses

continuous hand-over at the trajectory generation level. As compared to discrete dynamic

autonomy, continuous dynamic autonomy proposes a continuous-interaction, continuous-

control paradigm. That is to say, the interaction from the perspective of the human is

continuous, and the control reference provided to the robot is also continuous. We predict

the operator’s intended path on the navigation graph, and utilize the global path as a guide

for local trajectory generation wherever the intention aligns with the operator input [115]. If

the prediction becomes inaccurate, the system directly generates trajectories that follow the

operator input instead, resulting in smooth vehicle motions without discrete transitions. We

evaluate our method with a pilot study in a cluttered warehouse environment in a navigation

task, and show that assistance via continuous dynamic autonomy increases human-robot

efficiency by shifting control from the human to the robot. Further, we demonstrate

promising trends that the operator’s engagement is reduced during autonomous navigation.

Lastly, we discover some insights in human preference and discuss their implications on

future work.

7.2 Relevant Background

Navigation Graphs. Global planning focuses on choosing the optimal route given a fixed

goal. Given a known environment, we seek a simplified representation of the environment

that captures the free-space connectivity, forming feasible paths that are topologically
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Figure 7.3: Predicted path (green) on a semantically topological graph (yellow) used to generate local
trajectory candidates (magenta) during dynamic autonomy.

distinct. Simple grid-based representations represent the environment as a dense voxel map

or occupancy grid, which can generate a set of feasible global paths given a global goal

by using search-based methods such as A* or Dijkstra’s. Random graph representations

use sampling-based algorithms to generate feasible paths in the configuration space of the

robot; for example, PRM first constructs a graph by sampling points in the configuration

space and connecting neighboring feasible nodes [116]. Rapidly-exploring random trees

(RRT) [117] and its many variants [118] randomly builds a space-filling tree that represents

conectivity. These methods result in graphs with high density vertices and edges, resulting

in redundant global paths that may not be topologically distinct. Visibility graphs [119]

connect intervisible vertices of object geometries in the environment to create graphs in the

traversable workspace. However, these graphs represent edge-to-edge connectivity of the

obstacles in the workspace. These connected paths are usually unintuitive for navigational

purposes.

Topological graphs are abstract graph-based representations that preserve the topology

of the environment and maintain connectivity of the free space. The generation of topological

maps broadly divides the map representation into two different categories: 1) Geometric

topological maps where the representation derives from the connected geometry of the

environment [120–122]; and 2) semantically connected topological maps built online during

exploration-based navigation, whose connectivity is minimal but represents traversability of

space [123, 124]. Topological graphs have been used in 2D navigation for ground mobile

robots, derived from Voronoi partitioning of occupancy maps [120]. For 3D space, extracting

the precise topology has proven to be a challenge [125]. Similar Voronoi approaches have

been used to various degree of success: Generating 3D generalized voronoi diagram (GVD)
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has shown to be computationally difficult [126]. Sparse Topological Graph (STG) proposed

by Oleynikova et al. [121] has shown success in the 3D domain. However, GVDs and

consequently topological graphs derived from raw depth sensor scans will often result in

noisy, repetitive edges that are impractical for the purposes of navigation. Alternatively,

topological maps built during navigation do not consider the explicit detailed geometry of

the depth scans, but rather containing minimal edges that are traversable conditional on the

vehicle geometry and dynamics. These maps are often semantically interpretable: each path

clearly represents a traversable path. However, precisely generating semantically topological

maps remains an open and active area of research.

A graphical comparison of various navigation graphs is shown in Fig. 7.4.

Topological Navigation GraphVisibility graph Probabilistic Road Map (PRM)RRT

Figure 7.4: Graphical comparison of various navigation map representations.

Path prediction. Given the current state and a set of global distinctive paths accessible

from the current state, the operator’s intention is modeled as a choice over these paths.

The problem of choosing over these paths is formulated as a discrete selection problem.

The discrete selection problem updates the belief over a set of hypotheses (or goals) using

observations generated from sequential actions. Decision region determination (DRD)

adaptively selects and execute a sequence of tests (or actions) and use the corresponding

observations to reduce the set of hypotheses [127]. Maximum entropy inverse optimal control

(MaxEnt IOC) [12] studies a similar path prediction problem given a navigation graph. In

this case, path prediction is modeled as a deterministic Markov Decision Process (MDP)

that uses the agent’s noisy actions as observations. This method learns the behavior and

preference of an agent via inverse reinforcement learning by matching preferences in path

features and generates path predictions that optimizes the agent’s preference. In contrast

to our method, MaxEnt IOC uses actions as observations thus models behavior, and the

proposed method uses odometry as observations, thus modeling motion.

In the absence of a discrete goal, trajectory prediction projects a predicted motion

for a fixed time horizon into the future, typically in the continuous space. A simple, yet

effective model is the constant velocity model (CVM)/ average velocity model (AVM),

which outperforms most of the state-of-the-art complex neural network models in static

environment navigations [114]. Other methods focus on plan recognition, including modeling

inherent goal locations [128], modeling transition probabilities between sub-goals [129], or
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using reciprocal velocity obstacles [130].

Dynamic Autonomy. Dynamic autonomy has been introduced to allocate control be-

tween the human vs. robot autonomy based on environment safety and user preference.

Control allocation is typically designated between several levels of discretized levels of

autonomy, each with a set of pre-defined behaviors. An example set of levels of autonomy

is as follows, ranging from human control to robot autonomy: 1) Teleoperation, where

humans inputs are followed exactly, 2) Shared control, where human’s input and robot

input are combined, 3) Supervisory, where the human provides high-level goals that the

robot autonomously, and interjects wherever needed, and 4) full autonomy, where the robot

performs completely without a human in the loop [131].

Within a human-in-the-loop navigation setting, dynamic autonomy via discrete hand-offs

between pre-defined levels of autonomy has shown to be inadequate. Timing, including

reaction time and coordination has shown to be critical during the discrete transition [132]

in addition to requiring a need to adapt to the system dynamics [133].

7.3 Preliminaries

We build on definitions first introduced in Chapter 3 and Chapter 5, and follow the

hierarchical human-in-the-loop planning first introduced in Chapter 6.

A path ξ is a sequence of edges that connects a set of ordered waypoints. A trajectory

is a time-parameterized function ζ(t), defined over a time interval t ∈ [0, T ] that maps a

given time t to a state xt:

ζT : [0, T ]→ X T ∈ [0,∞), ζ(0) = x(0) (7.1)

The operator’s inputs are given in the form of uh = [vx, ω, vz]
⊤ via a joystick, where vx ∈ Vx

is the linear velocity, ω ∈ Ω is the angular velocity, and vz ∈ Vz is the z-velocity. A motion

primitive γ(t) is a parameterized trajectory function that generates a unique sequence of

states given an initial state x0 ∈ X and an input a ∈ A, A = Vx × Ω × Vz according to

specific dynamics. To parameterize the operator input into a motion primitive, we have

a = uh, following Eq. 3.6; that is,

γa,T : [0, T ]→ X a ∈ A, T ∈ [0,∞), x(0) = x0 (7.2)

s.t. ẋ = f(x,a) (7.3)

To parameterize the operator input into a motion primitive, we set a = uh. Each motion

primitive γ and trajectory ξ are generated such that we retain continuity up to snap.
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7.3.1 Topological map representation

We seek a minimal map representation that contains topologically distinct paths given

constrained environments. This means that paths in the map must be homotopically distinct,

i.e., every path represents a different homotopy class1. Therefore, we assume the existence

of a semantically topological navigation graph, defined as follows:

Definition 1 (Semantically topological navigation graph) A semantically topo-

logical navigation graph is a minimally representative, undirected navigation graph where

each path formed by connected vertices are homotopically distinct, and represent free-

space that is traversable.

Semantically topological navigation graphs are highlighted by two key requirements.

First, the paths are homotopically distinct, and second, they are traversable. This implies

there are no edges that lead to geometrically distinct but untraversable2 regions.

An illustration of these requirements are shown in Fig. 7.5.

 Traversable   

 Homotopically distinct

  Traversable   

  Homotopically distinct

2

1

  Traversable   

  Homotopically distinct

Figure 7.5: The illustrated paths violate the requirements for a semantically topological navigation graph.
(Left) The red path, although homotopically distinct from the other paths, leads to an untraversable corner.
(Center) Paths 1 and 2 are traversable; however, they are homotopically equal. (Right) Map satisfying both
requirements.

Such a map can be obtained a priori, or generated using topological exploration [123].

For this work, we assume that a semantically topological navigation graph is provided.

7.3.2 Independent given irrelevant alternatives.

The above assumptions with respect to homotopic classes of paths give rise to an

important characteristic of the paths on the navigation graph. The homotopically distinct

1Two paths are said to be in the same homotopy class iff one can be smoothly deformed into the other
without intersecting obstacles [125].

2Traversability in this context is conditional on the robot geometry and dynamics. For example, extreme
rugged terrain may not be traversable for a limited power mobile robot. In 3D, an opening much smaller
than the robot geometry is non-traversable. This is to say, traversability is not only defined as a function of
the environment, it is also dependent on the robot.
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paths can be assumed to be independent given irrelevant alternatives (IIA)3; that is, each

choice of path is independent and are non-substitutable given the agent’s preference for

each choice.

An example is illustrated in Fig. 7.6. In the left scenario, imagine the paths A, B, and C

lead to three different aisles, separated by shelves. These three paths cannot be interchanged

to replace one another for tasks that specifically require one of these aisles. Therefore, if it

is path B that is chosen, the addition of path C does not change that B is preferred over A

and C.

In the scenario on the right, however, path A and B exist within the same homotopy

class and span the open space between obstacles. The operator may choose path A over

B. However, if a new path C is added, the agent may decide that it is more preferable to

choose the middle path. Therefore, B becomes more preferred over path A by adding a

third choice, C. Such scenarios violate IIA.

Paths satisfy IIA

Path B is preferable over A Addition of C does not change  
the relative ranking of A, B

A  25%

B  75%

A  25%

B  50%

C  25%

Path A is preferable over B Addition of C changes preference  
ranking of A, B

Paths violate IIA

A  60%

B  40%

C  10%

A  30%

B  60%

Figure 7.6: A hypothetical example of sets of paths that satisfy and violate the IIA assumption. (Left)
Addition of path C does not change the relative ranking between B and A. (Right) By adding path C, the
choice of paths is influenced and B is now preferred over path A.

The implication of the IIA assumption is that the human’s choice model can be modeled

using the Boltzmann rationality decision model [134], discussed below.

7.3.3 Boltzmann rationality decision model

Human decision making process is most commonly modeled as a Boltzmann rationality

decision model, where the human is assumed to approximately optimize a reward function

given a set of choices [52]. This particular model is derived from Luce’s choice axiom [46],

which models the probability of selecting one option from a set of multiple discrete and

distinct options: Given a set of options O, the weight of each option o ∈ O is given by

w : O → R
+. Therefore, the probability that the human will select any particular option o

3IIA implies that adding another option, or changing the characteristics of a third option (C) does not
affect the probability between the first two options (A, B) considered. If the third option C is similar to the
first two options A and B, then the individual preference for A and B will be affected by the new addition
of option C.
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is given by:

P (o) =
w(o)

∑

o′∈O w(o
′)

(7.4)

The exponential reward formulation of the Luce choice axiom gives rise to the Boltzmann

noisily-rational policy, where the human’s intention is modeled as selecting an option in

proportion to their exponentiated reward [45, 47]:

P (o) =
exp(R(o))

∑

o′∈O exp(R(o′))
(7.5)

7.4 Approach

We propose a continuous dynamic autonomy framework given a semantically topological

navigation graph. The framework involves two parts: First, generating a path prediction

on the navigation graph, and based on the prediction, generate a dynamically feasible

trajectory. The continuous dynamic autonomy framework expands on the hierarchical HITL

method, and utilizes a predicted path on the topological navigation graph as the global

path.

Given a semantically topological navigation graph and the robot’s current state, we

extract a set of possible paths from the graph. We infer the likelihood of each path given

the vehicle’s previous odometry, and validate the prediction using the operator input. The

predicted path on the navigation graph represents the operator’s long horizon intention, and

becomes the global path such that the local trajectory generated follows the global path

autonomously. Depending on the certainty of prediction as validated by the operator’s input,

we utilize a dynamic autonomy framework: If the outcome is uncertain, then instead of

following the global path, the operator’s input is directly used to generate local trajectories,

until a prediction becomes confident.

In the following sections, we describe a novel path prediction on a navigation graph, and

describe continuous dynamic autonomy given the predicted outcome and the human input.

7.4.1 Path prediction on navigation graph

Path extraction from Graph. Given an unstructured environment, we represent the

traversable free space by a semantically topological graph G = {V k}, k ∈ [1,K], an undi-

rected graph represented by a set of K vertices V k.

As the robot traverses the environment, a set of available paths can be extracted from

the graph: As the robot approaches a vertex, a directed tree with a finite horizon is formed

with the approaching vertex being the root node of the directed tree. The directed tree

forms a set of paths, with each path represented by sequential vertices extracted from the

graph.
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Denote the root of the directed tree at time t as V 0. The set of paths is represented

by Ξ = {ξj}, j ∈ [1, J ]. The j-th path ξj represented by sequential vertices, s.t., ξj =

[Vj,0, Vj,1, ..., Vj,Nj
]. Alternatively, we represent the path ξj as a sequence of nj line segments

ξj = [sj,1, ..., sj,Nj
], anchored by connected vertices sj,i = {Vj,i−1, Vj,i}. Note that, each one

of the vertices in the path Vj,i ∈ ξj will map to a vertex on the graph, V k ∈ G, however,

many vertices on the path may map to the same node on the graph as segments are shared

between paths. See Fig. 7.7 for a detailed illustration of the path tree extraction.

V0

V1

V2

V3

V4

V5

V6

V7

V8

V9

V10

V11

V12

V13

V14

V15

V16

V0
V1,1

V2,1

V3,1

V4,1

V5,1 V6,1

V7,1

V7,2

V6,2

V5,2

V4,2V2,2 V1,2

V3,2

ξ3

ξ2 ξ1

ξ4

ξ5

ξ6

ξ7

V0 = V6

ξ3ξ2ξ1 ξ4 ξ5 ξ6
ξ7

V1,1, V2,1, V3,1 = V3 V5,1, V6,1 = V10V4,1 = V7 V4,1 = V9

V1,2 = V1 V2,2 = V0 V3,2 = V5 V4,2 = V8 V5,2 = V12 V6,2 = V13 V7,2 = V11

G = {V i}, i = 0,...,16

Undirected navigation graph G Directional subgraph given root node V0 Path tree representing 7 paths 

Figure 7.7: Extracting a path tree from a topological graph, given the current vehicle position. From a
single node, the undirected graph can be turned into a directed tree.

Receding horizon observation model. The receding horizon observation model pro-

ceeds as follows: At time t, given a window of M state observations x{t−M}:t, we evaluate

each path with an evaluation cost function. For simplicity, we will drop the superscript of

the past observations x{t−M}:t for readability.

Given a cost evaluation function c, we integrate the cost along the path:

C(x, ξ) =

∫

ξ

c(x, ξ)w(ξ)dξ (7.6)

Notice the addition of a weighting function w(ξ). Our observation model is a function of the

previous state observations x, therefore further down in the future, the previous observations

x are less likely to affect choices and costs in the future. The weighting function considers

the effects of time on the cost.

This can be normalized to a path integral, and the weighting function can simply be a

function of the time parameterization t s.t., w(t) : [0, 1]→ R
+:

C(x, ξ) =

∫

t

c(x, ξ(t))w(t)dt t ∈ [0, 1] (7.7)
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For a discretized path ξ = [s1, s2, ...sN ] with N segments, this becomes:

C(x, ξ) =
1

N

N
∑

n=1

c(x, sn)w(sn) (7.8)

This effectively says: for each path with N segments, we compute a weighted sum over

the segment wise cost c(x, sn).

ξ = {s1, s2, s3}

s1

 highw1

s2

 mediumw2

s3

 loww3

(a) 3-segment path (b) Decreasing influence (weight) of previous odometry on future segments

Figure 7.8: Illustration of decreasing weight factor for evaluating discrete path segments wrt observations,
as the observations are less likely to affect segments in the future.

Path prediction. Given a set of paths Ξ extracted from the graph G, we now compute

the probability of a path ξ ∈ Ξ given the robot’s observations x by using the Boltzmann

rationality decision model. Following Bayes rule,

p(ξ|x) =
p(x|ξ)p(ξ)

p(x)
ξ ∈ Ξ (7.9)

We follow the principle of max entropy to induce a distribution over the set of paths,

which says the probability of a path decreases exponentially with the cost C. The likelihood,

p(x|ξ), is given by:

p(x|ξ) ∝ exp(−C(x, ξ)) (7.10)

Substituting Eq.(7.10) back into Eq. (7.11):

p(ξ|x) =
p(x|ξ)p(ξ)

p(x)
ξ ∈ ΞV (7.11)

= η · p(x|ξ)p(ξ) (7.12)

= η · exp

(

−
1

N

N
∑

n=1

c(x, sn)w(sn)

)

p(ξ) (7.13)

Compare this formulation with Eq. 7.5; this is effectively the Boltzmann model with a

prior.
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Segment wise cost c(x, s). We now discuss a simple evaluation cost function for Eq. 7.8

by vector projection. Given a segment of the path s and a path x, we sampleN discretizations

along the observation and the path segment, s.t., ~xi = xi − xi−1, and ~si = s(i)− s(i− 1)

with s(i) indicates the ith discretization of the segment s. A point-wise projection is given

by:

proj(x, s) =
1

D

D
∑

i=1

~xi
‖~xi‖

·
~si
‖~si‖

(7.14)

=
1

D

D
∑

i=1

~̂xi · ~̂si (7.15)

Finally, we shift the projection such that the cost is positive:

c(x, s) = (1− proj(x, s)) (7.16)

7.4.2 Continuous Dynamic Autonomy

When humans are interacting with the robot, their actions give great insight with respect

to their underlying intention. Assuming the human is observant and not distracted, they

could provide no inputs as the robot navigates, which implies that they agree with the

motion of the vehicle. However, if they provide an input, this indicates that they disagree

with the motion of the vehicle and would like to change it. This information can be used

in two different ways: First, how much the operator agrees with the current path of the

vehicle, and second, what motion the operator prefers instead.

We leverage this key insight in constructing our dynamic autonomy framework. The

continuous dynamic autonomy architecture is shown in Fig. 7.9. The system continuously

predicts paths on the topological graph, and generates local trajectories accordingly. The

operator inputs are continuously evaluated against the prediction. If the prediction does

not match with the operator’s intended direction, a trajectory is generated according to

the operator’s direct input. The vehicle follows the commanded trajectory smoothly and

without discrete stops.

Prediction checking. The output prediction is checked against the operator input con-

tinuously. For each input u, we evaluate whether the immediate next step agrees with the

user input. We treat the first segment of the path as the immediate next step. To evaluate

agreement, we compute the dot product of the joystick input uh with the normalized vector

representing the first segment of the path:

uh ·
−→
Sj = uh ·

Vj,1 − Vj,0
‖Vj,1 − Vj,0‖
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Previous odom Predicted path Joystick inputAlternate path choices

(b) Input disagrees with predicted path(a) Input agrees with predicted path

Figure 7.9: Illustration of prediction diverging with human preference.

However, we must take into account the total number of paths that is available to choose

from. If the input most agrees with the predicted path, we can understand it to follow the

best possible path. Therefore we evaluate agreement by normalizing over all of the first

segment paths stemming from the current vertex:

wagreement(ξj , uh) =
(1 + uh ·

−→
Sj)/2

∑

j(1 + uh ·
−→
Sj)/2

ξj ∈ Ξ (7.17)

for Ξ is the set of paths stemming from the current vertex V0.

Trajectory generation If the joystick input agrees, then we have fully autonomous

operation where the predicted path ξ∗ is used as the global path guiding local trajectory

generation. Any local trajectory generation method can be used. For this paper, we use

Biased Incremental Action Sampling (BIAS) introduced in Chapter 5 and used in the

hierarchical setting, as in Chapter 6.

If the operator input disagrees with the first segment of prediction, the prediction is

discarded, and the operator input uh is directly used to generate a motion primitive, following

[19]. If the primitive is not collision-free, then BIAS is again invoked to generate collision

free trajectories.

The algorithm of continuous dynamic autonomy is illustrated in Algorithm 6.

7.5 System Design

The HITL system is illustrated in Fig. 7.11.

The operator inputs are received as a continuous stream of joystick values, indicating

linear, angular, and z velocities. The operator’s inputs are first categorized into direct

primitive motion inputs, and navigation inputs. The direct primitive motion inputs are

followed directly; these are: in-place yaw motions, translation along the z-axis, translation

along the body y axis, and a zero input to indicate a stop for the vehicle. This enables ease
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Previous odom Predicted path Joystick inputAlternate paths Vehicle trajectory

(a) Input disagrees with prediction (b) Motion primitive generated using input (c) Autonomy resumes once prediction aligns

Figure 7.10: Illustration of the continuous dynamic autonomy transition. As the predicted path is invalid
given the operator input, the input is parameterized to generate a dynamically feasible motion primitive.
As the prediction becomes confident again, the autonomous hierarchical framework takes over: a local
trajectory is generated to follow the predicted global path.

Algorithm 6: Continuous Dynamic Autonomy

Input: Given a topological navigation graph G
1 while Robot navigating do

2 Prediction

3 Extract available paths given vehicle state xt: Ξ = {ξ}
4 Compute path prediction p(ξ|x) via Eq. 7.9
5 Evaluate most likely path ξ∗ = argmaxξ p(ξ|x)

6 Agreement

7 if ξ∗, ut agree then

8 Set global path ξG = ξ∗

9 Generate local trajectory using BIAS ζ

10 else

11 Set local trajectory to parameterized motion primitive ζ = γ(ut, xt)

12 return ζ

of use for achieving human objectives such as inspection and exploration, as well as to stop

the vehicle. The navigational inputs involve motions in the x-y plane, which indicates an

intention to navigate. These inputs invoke the hierarchical framework for navigation.

During robot navigation, hierarchical navigation planning is invoked. A global path,

ξG guides the generation of local trajectories ζ. The local trajectories ζ are dynamically

feasible and collision-free, while the global path represents a general intended motion for a

longer horizon. The global path is generated via path prediction on a topological navigation

graph as described in Section 7.4.1. If the input agrees prediction, global path is updated

to be the outcome of the prediction. Otherwise, control is handed back to the operator.

Although this process is discrete, the human is always interacting with system via joystick,

therefore achieving continuous-interaction. Further, the trajectories generated either from

a local trajectory or human-input parameterized motion primitive are guaranteed to be

continuous up to snap, therefore achieving continuous-control.

By design, the continuous dynamic autonomy is only invoked during navigation. If the
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Figure 7.11: System Diagram for HITL dynamic autonomy with prediction on semantically topological
navigation graphs.

operator wishes to stop and perform in-place linear motions, the system fully allows the

operator to do so without having to switch into discrete modes of operation.

Figure 7.12: Experiment setup: The task is to navigate in a densely cluttered warehouse environment
(45m×22m×11m) in simulation following a path described verbally to the operator and indicated by yellow
arrows, and return to the red landing pad at the origin. The secondary task is to identify a green box with
a symbol. The operator is given a third person omniscient view, and the joystick inputs are given in the
body frame of the vehicle.
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7.6 Experiments

7.6.1 Experiment design

The task is to navigate in a densely cluttered warehouse environment (45m×22m×11m)

in simulation following a path described verbally to the operator and indicated by yellow

arrows, and return to the red landing pad at the origin as shown in Fig. 7.12. The operators

were also asked to look out for a randomly placed green box along the path as a secondary

task, in order to simulate attention division similar to search-and-rescue. The simulated

quadrotor is controlled via a joystick, specifying the forward, side, angular, and z velocities

scaled according to a max velocity parameter, set to 1.5 m/s. The operator is given a

third-person omniscient view with only the guiding arrows visible (Fig. 7.12). The generated

trajectory was chosen to be hidden so as to simulate control without visual aids. This design

choice and its implications will be discussed later in the results section. The semantically

topological navigation graph used for the proposed method is shown in Fig. 7.13. Paths

extracted from the graph are approximately 10m in length.

Figure 7.13: Semantically topological navigation graph for the warehouse. Cutaway views of the navigation
graph is shown at various viewpoints.

7.6.2 User study design

We conduct a pilot study (n = 10) to evaluate the proposed method, continous dynamic

autonomy (DA) method against two methods of trajectory-based teleoperation: motion
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Figure 7.14: A sequence of continuous dynamic autonomy switching for rounding a corner. The operator
disagrees with the predicted path (green) from (b) to (c), and thus a human-parameterized trajectory (blue)
is generated. As the prediction aligns again, autonomy resumes (d-e).

primitive teleoperation (MP) [19], and a velocity based teleoperation method (VEL). All

three methods are continuous up to snap. For all three methods, the joystick interface

remains the same. However, the underlying dynamic models that generate the trajectories

are different: DA and MP both utilize the unicycle model, whereas for the VEL method,

the yaw is decoupled from the heading.

The participants have no prior exposure to our system but have varying experience with

teleoperating quadrotors. The pilot follows a within-subjects design, where each participant

used all three methods, A, B, and C. The ordering of the methods was randomized, such that

A, B and C corresponded to one of VEL, MP, and DA. Prior to each trial, the participant

was given a tutorial period of 3 minutes to test out the control and dynamics. As the

controls required for all three systems are the same, no additional details were provided

about the controls. However, note that, since the underlying dynamic model that generates

the trajectories for MP and DA are the same, the control during the tutorial period is

exactly the same.

7.6.3 Hypotheses

The experiments in this pilot study aim to evaluate human-robot efficiency by way of

operator engagement. The operator engagement is evaluated by using number of joystick

inputs used per trial. Operator preference is evaluated via a survey post-trial. The hypotheses

are:

H1 The system will require less direct human control and will navigate mostly with autonomy

with DA.

H2 Operators will engage with the system less when using DA, leading to reduced number

of inputs during navigation.

H3 Participants will prefer DA over direct control methods VEL and MP.
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7.6.4 Results

7.6.5 Operator Behavior over Time

The operator behavior over time using continuous dynamic autonomy, DA, is shown

in Fig. 7.15. These plots show the operator’s behavior over time with respect to (1) The

number of possible path choices, and (2) the operator’s input and how it agreed with the

predicted path. As the vehicle approaches a node, the number of possible path choices is

computed as the number of possible path stemming from the node given a fixed path length.

The number of immediate branching factor denotes the number of edges stemming from the

current node. The significance of the path choices indicates complexity of the environment,

whereas the immediate branching factor indicates the number of immediate choices that is

available to the operator.

As the vehicle approaches a point with many decision points, the operator tends to slow

down and stop, observe, and proceed with caution. This behavior is qualitatively observed

across multiple participants with varying degrees of cautiousness (high caution is indicated

by many stops). However this behavior is not limited to DA; it is also observed across all

three methods (Fig. 7.16).
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Figure 7.15: Ooperator behavior over time for two select trials, highlighting two observations. 1) The
number of path choices/immediate edge choices vs. the type of motion (shaded), Observe that the vehicle is
stopped more frequently near areas of increased path choices. 2) Joystick agreement vs. type of motion. As
prediction and human’s inputs align, vehicle navigates mostly autonomously.
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Figure 7.16: Odometry of participant trials for select participants. (left) VEL (center) MP (right) DA
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7.6.6 Odometry Evaluation

We categorize motion into 4 modes: (1) Stop (2) In-place yaw, (3) Z and (4) Nav,

which means that the input provided includes non-zero inputs along the x-y plane. We

primarily focus on Nav, as DA is invoked only during navigation.

Fig. 7.16 shows some example odometries of the three methods. We observe that the

vehicle is mostly autonomous for DA. We compute the amount of navigation done by human

control. This result is tabulated in Table 7.1, with an accompanying bar plot in Fig. 7.17.

These results were assessed using a one-way repeated measures ANOVA. The results showed

that the proposed method was able to reduce the human’s role in navigation control from

86% to 24.5% (F (2, 34) = 88.0, p < .001), supporting H1.

Table 7.1: Breakdown of odometry in each mode as a percentage of the total trajectory length. A stacked
bargraph is plotted in Fig. 7.17 for visual comparison.

Stop Yaw Z Nav Human Nav Autonomy

VEL 5.1%± 3.8% 0.7%± 0.8% 2.2%± 2.7% 92%± 5.5% 0.00
MP 5.6%± 4.7% 1.4%± 0.6% 3.9%± 1.7% 89.1%± 5.8% 0.00
DA 7.5%± 5.4% 2.1%± 1.4% 4.5%± 2.4% 24.5%± 6.4% 62%± 7.5%
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Figure 7.17: Odometry length, broken down by modes. The human controlled navigation (Nav Human) is
reduced significantly, with operator directly controlling navigation approx 24.5% of the time. The tabulated
result of this graph is shown in Tab. 7.1.
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7.6.7 Trends in Operator Engagement

The number of inputs corresponding to each mode is shown in Table 7.2. These results

were assessed using a one-way repeated measures ANOVA. While we observe that the

number of inputs received during Nav is lower than both of the comparison methods, this

data is not supported by statistical significance and should be noted as a trend. We believe

that this is due to the relatively small sample size and high variance in the number of

inputs. Thus, H2 could not be supported at this time. However, this trend combined with

confirmed H1 indicates that the system’s assistance is effective at increasing human-robot

efficiency. To validate this trend, we believe the proposed method could benefit from a

further study with larger sample sizes to further confirm this hypothesis with statistical

significance.

Table 7.2: Number of inputs for the warehouse navigation task

Stop Yaw Z Nav Total

VEL 25± 19 14± 11 18± 14 219± 100 277± 113
MP 47± 57 50± 48 50± 46 238± 134 384± 234
DA 46± 36 31± 21 43± 22 187± 48 307± 115

7.6.8 Preference and Qualitative Observations

We additionally evaluate operator preference given the three methods. The post-trial

survey asked the following questions for each method:

1. I find the controls to be natural/intuitive.

2. I find the controls to be comfortable to use.

3. I was able to stabilize the vehicle with ease.

4. I was able to navigate the vehicle with ease.

5. I was able to avoid obstacles with ease.

6. The vehicle performed the motion that I intended for it to do.

The results are shown in Fig. 7.18, with a strong support against H3. The trends suggest

that the operators preferred VEL, with the yaw decoupled from the vehicle’s heading. The

proposed method, DA, was thought to be more difficult to use. This result leads to a

subjective vs. objective gap in DA’s perceived helpfulness. We reason about this gap via the

following observations:

Behaviors of naive vs. experienced operators Naive operators tend to act more

carefully by provide minor corrections. This is illustrated via “nudging” the system by flicking

the joystick. Experienced operators are well versed with motion coupling and dynamics of

the quadrotor. As the VEL system is a direct velocity parameterization of their inputs, they

are more likely to prefer this method.
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Figure 7.18: Participant survey responses to various questions regarding use, with each individual method
evaluated separately. Participants preferred the proposed DA method the least given its inability to respond to
individual nudges. F-values: Natural/Intuitive: F (2, 18) = 6.9, p < .01; Comfortable: F (2, 18) = 6.8, p < .01
Stable: F (2, 18) = 5.1, p < .05; Ease of Nav: F (2, 18) = 5.9, p < .05; As Intended: F (2, 18) = 7.6, p < .01.

Table 7.3: User survey responses comparing the three methods. Each number indicate number of preferred
ranking received for each method by the participants.

Control

Good So-so Least

VEL 3 2 0

MP 0 2 1

DA 0 3 5

Obstacle Avoidance

Easy So-so Hard

VEL 3 2 4

MP 3 4 0

DA 1 2 5

Preference

Preferred So-so Least

VEL 5 3 2

MP 4 6 0

DA 1 1 8

Subjective perceptions of operators We note many subjective interpretations by the

operators for the controls. For example, some participants remarked that “the controls (for

DA) feels completely different than the previous (MP)” during the tutorial period. However,

the controls and the underlying dynamics are exactly the same. Further, the resulting

odometries of VEL and MP were qualitatively observed to be drifty and unstable – however,

the operators still preferred them for controllability (Fig. 7.18). We hypothesize that, if

we show videos recorded of the vehicle navigation from this study to a separate group of

participants and ask which method they believe is more stable, they would perceive that

DA is more stable than VEL or MP. We leave these investigations as future work.

Sensitivity of controls All three methods used the same set of parameters. Therefore,

we attribute remarks on “sensitivity” to the differing trajectory generation methods: The

participants expected the system to respond to minor adjustments in inputs. As the local

trajectories generated by DA do not respond to minor adjustments, the participants remarked

this to be unresponsive and difficult to control.

Interface design and behavioral changes The generated trajectory was not visualized

to the operators. Therefore, many operators provided inputs based on what they perceive

the robot will do at the immediate next step, even though the system’s current trajectory

was safe and ideal. We hypothesize that adding visual feedback of the trajectory would
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change the operator’s interaction with the system and will help to increase “trust“ of the

robot, although we leave further investigations of these hypotheses to future work.

7.7 Conclusion and Future Work

This chapter presents a continuous dynamic autonomy framework, by generating path

predictions on semantic topological maps. The contribution of this chapter is two folds:

1) Introduction of path prediction on navigation graphs by way of a simple receding

horizon model; and 2) Continuous dynamic autonomy with control allocated fluidly between

the human and the robot. This framework shows that complex environments with dense

environment features can be eschewed in favor of simple representations that encode semantic

traversability.

The results in this chapter yields some surprising discoveries: While the human-robot

performed efficiently with assistance, operators did not like having a system that was non

responsive to small control input changes. These observations give great insight to what

it may mean to how humans visualize robot motions and how they wish to interact with

robots.
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Conclusion

This thesis introduces a new human-in-the-loop control paradigm by way of modeling

human intention in navigation as non-goal specifications, and generating trajectories that

satisfy the human intention. We first introduced methods that simplify the human-in-the-

loop control interface by way of encoding operator inputs into motion primtiives (Chapter 3

and 4). Then, we introduced methods to generate locally collision-free trajectories (Chapter

5) and extended motion planning for HITL to include global paths (Chapter 6) as well.

Lastly, we incorporated environment context as a part of human-in-the-loop via a semantic

topological navigation map. Inference on such maps is valuable for predicting human

intention during navigation, as contextual cue is a common denominator available to both

the human and the robot during navigation.
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8.1 Summary of Contributions

8.1.1 Motion Primitives based HITL Control

Chapter 3 presents a method for direct HITL control by parameterizing operator inputs to

map to a set of motion primitives, generated using a selected dynamics function. Unintuitive

system dynamics hinder human operators to be able to control a system with precision;

this chapter showed that by remapping inputs to a more intuitive system model via motion

primitives, the human-robot system can perform with significantly increased efficiency. This

chapter further developed key ideas relating to MAV control and trajectory generation:

Other dynamics models (e.g., unicycle model) can be directly translated to multirotor UAVs

by leveraging differential flat properties of multirotors. Additionally, this chapter develops

a method for generating snap-continuous motion primitives, which allows for computing

feedforward references up to angular acceleration, as well as continuous error functions for

smoothness of control.

Chapter 4 extends Chapter 3 to reactive collsion avoidance. Construction of motion

primitives establishes a direct correspondence between the action space and the state space

of the robot. Hence, reactive collision avoidance can be achieved via reactive pruning of

motion primitive libraries. Operator input is then mapped to the closest safe primitive,

guaranteeing collision-free navigation even though the operator’s direct inputs are unsafe.

The proposed method led to surprisingly natural behaviors in the presence of obstacles:

If the vehicle is headed towards a wall, then the vehicle will choose linear velocities that

gradually decrease until the vehicle is stopped, even though the human has not specified

such action. If the vehicle is headed to pass through an narrow opening between two pillars,

the vehicle will slow down to thread through and speed up once the opening is passed.

8.1.2 Local trajectory generation and Hierarchical Motion Planning for

HITL

Instead of taking reactive measures to assist the operator from collisions, Chapter 5

proposes generating predictive long horizon trajectories that align with the operator’s

directional intent while circumventing obstacles. The key constraints that arise from having

a human control the robot, are that the trajectories must be legible, and must be able

to optimize for non-goal based specifications. To satisfy these requirements, this chapter

proposes a computationally efficient way to generate trajectories by concatenating sequential

motion primitives using a novel method called Biased Incremental Action Sampling. BIAS

allows iterative construction of a motion primitive tree. The resulting tree contains various

length trajectories that are smooth, continuous up to snap, and approximately optimize the

human’s directional objective.

Chapter 6 develops a hierarchical framework that includes global path representation.

By including a global path, we remove the human operator from using dynamic-level control
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input, and instead utilize the inputs to inform trajectory generation. The key insight we

exercise in this chapter is that, we can represent the operator’s directional intention as the

global path, and interpret local trajectories as a set of sequential actions that must be taken

to satisfy the operator’s intention. This framework allows teleoperation to move from an

operator-controlled vehicle, to an operator-informed motion generation model.

8.1.3 Incorporating Contextual Information for Continuous Dynamic

Autonomy

Lastly, Chapter 7 develops a framework for incorporating contextual information via

semantic navigation graphs. The existence of partially available map information provides

rich, contextual information about the environment that could assist the human further

in the human-in-the-loop context. In constrained environments, the set of paths in the

environment that the robot can undertake are enumerable and distinct. Therefore, the

environment information can be succinctly condensed into a semantically representative

topological navigation map. Hence, the role of the human can be reduced to selecting from

a set of discrete, traversable paths. This chapter lays out a method for path prediction on

semantically topological navigation graphs, and utilizing it within a framework of continuous

dynamic autonomy.

8.2 Discussion

This thesis aim to increase the efficiency of human-robot system for navigation. In order

to do so, the robot and human need to operate seamlessly in a continuous fashion. The

robot needs to act according to the human’s intention during every step of the navigation

task. Given the myriad of competing objectives that the human-robot system faces, this

thesis proposes shifting as much responsibility from the human to the robot as possible with

autonomy. Throughout the chapters, we showed that operator engagement with the system

decreased as robot autonomy increased. Increasing robot intelligence by using contextual

cues lead to a reduction in the complexity of the human’s role. As robot intelligence and

autonomy increases, so does the planning horizon. This correlation is a key consideration

in designing human-robot systems. A summary of some of the key insights is provided in

Table 8.1.

8.3 Future Directions

Much of this thesis focused on assistance by modeling the ideal path that the human

envisions. However, the human’s intention model is much more complex than just that.

Throughout this thesis, we discovered that it is not sufficient to only model the human’s

intention on a path level. For example, goal modeling for certain applications is necessary
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Table 8.1: Key Insights on Human-in-the-loop Navigation

Human control Robot motion Intention

How does the human interface
with the robot?

How should the robot use the hu-
man input to generate motion?

How should intention be repre-
sented and predicted for naviga-
tion tasks?

◮ Abstract away difficult dy-
namics

◮ Shift responsibilities from hu-
man to robot as much as pos-
sible

◮ Robot and human need to op-
erate seamlessly in a continu-
ous fashion

◮ Motions need to be legible
and natural to the operator

◮ Human has a trajectory in
mind – Robot needs to trans-
late human input into that
trajectory

◮ Increase robot intelligence by
inferring and using contextual
knowledge

◮ Robot needs to act according
to the human intention at ev-
ery level

for generating globally optimal plans. On the other hand, we have shown that, even though

assistance is provided at a path level, humans would like to see their lower level inputs

be followed by the robot as well. Human’s intention is multimodal ; regardless of the task,

humans tend to have an ideal model of how to go about achieving it. For human-robot

system to collaborate, the robot system needs to interpret the human correspondingly. This

means that we must model intention along multiple axes. For mobile robots, having an

appropriate intention representation at various timescales allows inference and prediction to

happen at the corresponding frequencies to aid assistance at the various speeds.

Robots will always co-exist alongside humans. In order for the two agents to work

collaboratively, we must understand and build models of intention and behavior of humans,

and build implicit/explicit communication models of objectives and intention between

human-robot systems. This thesis contributes methods and insights for future advancement

in human-robot systems.
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