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Abstract— This paper presents a continuous dynamic auton-
omy framework for human-controlled navigation, such that the
robot seamlessly navigates with semi-autonomy with human
directly controlling the robot. In assisted navigation, the robot
needs to first reason about the operator’s intention given
the navigation context. We propose incorporating environment
context into the navigation framework via online path pre-
dictions given a semantically topological navigation graph that
represents general traversability. Such path predictions are then
used in autonomous navigation wherever possible. Continuous
dynamic autonomy ensures that the human-robot system main-
tains continuity in the human interaction and the reference
trajectory for the robot avoiding destabilizing hand-overs while
engaging human only when required. The result is a system that
is maximally efficient, such that the human intervenes only
necessarily, resulting in minimal operator engagement while
retaining smooth navigation performance.

I. INTRODUCTION

Dynamic autonomy has been introduced to allocate control

between the human vs. robot autonomy. In continuous set-

tings such as navigation, the most efficient framework should

maximize the strengths of the human and robot wherever

possible. However, dynamic autonomy with discrete hand-

offs in continuous tasks such as driving or remote piloting

have shown to be destabilizing as sudden changes introduce

discontinuities in the control reference. We propose a novel

human-in-the-loop framework with continuous dynamic au-

tonomy such that human-robot maintains continuity in the

human interaction (continuous-interaction) and the reference

trajectory for the robot (continuous-control) (Fig. 2). Our

method is driven by two key principles: 1) Incorporate

the environment information as a contextual prior for the

human’s decision making during navigation and 2) Ensure

continuous hand-over and trajectory generation.

Consider the two scenarios in Fig. 3: A hazardous ware-

house with collapsed shelves, and a wooded area with rough

terrain. Both scenarios follow a simplified task structure:

navigate, inspect the scene, and return to the start. This

task structure is best suited for human-in-the-loop control

due to the unpredictability of the scenario. In both of these

cases, some partial map may be available. However, this

information is imperfect as unexpected obstacles changes

traversability assumptions.

The partial availability of a map can provide rich, con-

textual information for semi-autonomy. This information

is especially informative in reasoning about the operator’s

intentions. In constrained environments, the paths that the
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Fig. 1: Predicted path (green) on a semantically topological graph (yellow)
used to generate local trajectory candidates (magenta) during dynamic
autonomy.
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Fig. 2: Discrete dynamic autonomy is highlighted by distinct hand-offs
between human and robot. We propose the idea of continuous dynamic
autonomy, where assistance is provided as needed and does not require
explicit communication and hand-off between human and robot.

robot can undertake are enumerable and distinct; e.g., hall-

ways, narrow set of corridors, tunnels, or areas with dif-

ficult terrains. Therefore, the environment information for

navigation purposes can be succinctly condensed into a

semantically representative topological navigation map for

decision making.

This leads to a key insight that the role of the human

in human-in-the-loop (HITL) navigation in constrained envi-

ronments can be reduced to selecting from a set of discrete,

traversable paths. By incorporating the environment context

as a semantically topological navigation graph, the robot’s

autonomy can be further increased by predicting the path

Fig. 3: Motivating scenarios for human-in-the-loop navigation. The example
navigation tasks on the left follow a simplified task structure: navigate and
identify/search/inspect along the path, and return to the start. Continuous
dynamic autonomy seeks to assist teleoperation in these scenarios without
well-defined goals.



that the human intends to follow. We formulate online global

path prediction by updating beliefs about the set of discrete,

distinctive paths from the navigation graph as the robot

moves. In certain scenarios where the human provides an

indicative input that deviates from the predictions, control

of trajectory generation is handed over to the human oper-

ator until prediction is re-aligned. The outcome is that the

transition between human control and robot is imperceptible.

This paper proposes continuous dynamic autonomy in a

hierarchical HITL framework by generating path predictions

on a semantically topological navigation graph and discusses

continuous hand-over at the trajectory level. We evaluate

our method with a pilot study in a cluttered warehouse

environment in a navigation task, and show that assistance

via continuous dynamic autonomy increases human-robot

efficiency by shifting control from the human to the robot.

II. PRELIMINARIES

We generate trajectories in the flat output space of the

multirotor, i.e., x = [x, y, z, θ] [1]. A path ξ is a sequence of

edges that connects a set of ordered waypoints. A trajectory

is a time-parameterized function ζ(t), defined over a time

interval t ∈ [0, T ] that maps a given time t to a state xt:

ζT : [0, T ] → X T ∈ [0,∞), ζ(0) = x(0) (1)

Operator’s inputs are given in the form of uh=[vx, ω, vz]
⊤

via a joystick, where vx∈Vx is the linear velocity, ω∈Ω is

the angular velocity, and vz∈Vz is the z-velocity. A motion

primitive γ(t) is a parameterized trajectory function which

generates a unique sequence of states given an initial state

x0 ∈ X and an input a ∈ A,A=Vx×Ω×Vz according to

specific dynamics:

γa,T : [0, T ] → X a ∈ A, T ∈ [0,∞), x(0) = x0 (2)

s.t. ẋ = f(x,a) (3)

To parameterize the operator input into a motion primitive,

we have a=uh. We select the unicyle model for motion

primitives [2] and generate trajectories such that continuity

up to snap is retained.

A. Topological map representation

We seek a simplified graph representation that captures the

free-space connectivity. Search-based methods such as A*

utilizes shortest-distance heuristics to generate paths between

start and end goal configurations. Sample-based methods

such as Probabilistic Roadmap (PRM) [3] and RRT [4]

results in high density vertices and edges, but fails to capture

distinct topologies of the environment.

In this work, we assume the existence of a semantically

topological navigation graph [5]: a minimally representative,

undirected navigation graph where each path formed by con-

nected vertices are homotopically distinct, and represent free-

space that is traversable. This means that paths in the map

must be homotopically distinct, i.e., every path represents a

different homotopy class1, and that they are traversable by

1Two paths are said to be in the same homotopy class iff one can be
smoothly deformed into the other without intersecting obstacles [6].

the robot.

B. IIA and choice theory

The above assumptions give rise to an important charac-

teristic of the paths on a semantically topological navigation

graph. The homotopically distinct paths can be assumed to

be independent given irrelevant alternatives; that is, each

choice of path is independent and are non-substitutable given

the agent’s preference for each choice.

The implication of the IIA assumption is that the human’s

choice model can be modeled using the Boltzmann ratio-

nality decision model [7], where the human is assumed to

approximately optimize a reward functions given a set of

choices [8–10].

P (o) =
exp(R(o))

∑

o′∈O exp(R(o′))
(4)

III. METHODOLOGY

The algorithm involves two components: 1) Path predic-

tion on a semantically topological navigation graph, and 2)

continuous dynamic autonomy.

A. Path prediction on navigation graph

a) Path extraction from Graph.: Given a semantically

topological graph G = {V k}, k ∈ [1,K] with K vertices

V k, and the robot’s current state, we extract a set of possible

paths from the graph. As the robot navigates, the approaching

vertex becomes the root node, V 0, of a directed tree with a

finite horizon. Each branch j in the navigation graph is a

path, ξj = [Vj,0, Vj,1, ..., Vj,Nj
] with Nj vertices, composed

of Nj−1 segments sj,i = {Vj,i−1, Vj,i}. Note that, each one

of the vertex in the path Vj,i ∈ ξj will map to a vertex on

the graph, V k ∈ G, however, many vertices on the path may

map to the same node on the graph as segments are shared

between paths. See Fig. 4 for a detailed illustration of the

path tree extraction.

b) Receding horizon observation model: To generate a

prediction, we use a simplified model of vehicle behavior.

At time t, given a window of M past state observations

x{t−M}:t, we evaluate each path with an evaluation cost

function. We drop the superscript for readability.

Given a cost evaluation function c, we integrate the cost

along the path:

C(x, ξ) =

∫

ξ

c(x, ξ)w(ξ)dξ (5)

Notice the addition of a weighting function w(ξ) : [0, 1] →
R

+. This model a function of the previous state observations

x, therefore further down, the previous observations x are

less likely to affect choices and costs in the future. The

weighting function considers the effects of time on the cost.

For a discretized path ξ = [s1, s2, ...sN ] with N segments,

this becomes:

C(x, ξ) =
1

N

N
∑

n=1

c(x, sn)w(sn) (6)
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Fig. 4: Extracting a path tree from a topological graph, given the current vehicle position. From a single node, the undirected graph can be turned into a
directed tree.

c) Segment wise cost c(x, s): Given a segment of

the path s and x, we sample N discretizations along the

observation and the path segment, s.t., ~xi = xi − xi−1, and

~si = s(i)− s(i− 1) with s(i) indicates the ith discretization

of the segment s. A point-wise projection is given by:

proj(x, s) =
1

D

D
∑

i=1

~xi

‖~xi‖
·

~si
‖~si‖

=
1

D

D
∑

i=1

~̂xi · ~̂si (7)

Then, shift the projection such that the cost is positive:

c(x, s) = (1− proj(x, s)) (8)

d) Path prediction: To compute the probability of a

path ξ ∈ Ξ given x, we use the Boltzmann’s rationality

decision model. Starting with Bayes rule,

p(ξ|x) =
p(x|ξ)p(ξ)

p(x)
ξ ∈ Ξ (9)

we follow the principle of max entropy to induce a distri-

bution over the set of paths, which models the probability

of a path decreasing exponentially with the cost C. The

likelihood, p(x|ξ), is given by:

p(x|ξ) ∝ exp(−C(x, ξ)) (10)

Substituting Eq. (10) into Eq. (11) and using η as a

normalization factor:

p(ξ|x) = η · exp

(

−
1

N

N
∑

n=1

c(x, sn)w(sn)

)

p(ξ) (11)

B. Continuous Dynamic Autonomy

When humans are interacting with the robot, their actions

gives great insight with respect to their underlying intention.

Assuming the human is observant and not distracted, they

could provide no inputs as the robot navigates, which implies

that they agree with the motion of the vehicle. However, if

they provide an input, this indicates that they disagree with

the motion of the vehicle and would like to change it. We

leverage this key insight in constructing continuous dynamic

autonomy framework as follows:

Previous odom Predicted path Joystick inputAlternate paths Vehicle trajectory

(a) Agreement (b) Disagreement

Fig. 5: Illustration of prediction agreement. As the predicted path diverges
from the operator input, the input is used to directly generate a dynamically
feasible motion primitive. As the prediction becomes confident again, full
autonomy takes over.

e) Prediction checking: Predictions are continuously

evaluated against the human input uh as to whether the

operator agrees with the prediction. We do so by computing

the dot product of the joystick input uh with the normalized

vector representing the first segment of the path, i.e., the

immediate next step:

uh ·
−→
Sj = uh ·

Vj,1 − Vj,0

‖Vj,1 − Vj,0‖

Then, agreement is evaluated by normalizing over all of the

first segment paths stemming from the current vertex:

wagreement(ξj , uh) =
(1 + uh ·

−→
Sj)/2

∑

j(1 + uh ·
−→
Sj)/2

ξj ∈ Ξ (12)

Ξ is the set of paths stemming from the current vertex V0.

f) Trajectory Generation: If the joystick input agrees,

the robot operates fully autonomously where the predicted

path ξ∗ is incorporated within a hierarchical framework [11]

to guide local trajectory generation. Any local trajectory

generation method can be used. For this paper, we use Biased

Incremental Action Sampling (BIAS) introduced in [12].

During disagreement, the operator input uh is directly used

to generate a motion primitive, following [2] with obstacle

avoidance. The algorithm of continuous dynamic autonomy

is illustrated in Algorithm 1.

Algorithm 1: Continuous Dynamic Autonomy

Input: Given a topological navigation graph G
1 while Robot navigating do
2 Prediction
3 Extract paths given vehicle state xt: Ξ = {ξ}
4 Compute path prediction p(ξ|x) via Eq. 9
5 Evaluate most likely path ξ∗ = argmaxξ p(ξ|x)
6 Agreement
7 if ξ∗, uh agree then
8 Set global path ξG = ξ∗

9 Generate trajectory ζ

10 else
11 Set local trajectory to parameterized motion primitive

ζ = γ(uh, xt)

12 return ζ

Fig. 8: Experiment setup: The secondary task is to identify a green box
with a symbol. The operator is given a third person omniscient view, and
the joystick inputs are given in the body frame of the vehicle.



Fig. 6: Semantically topological navigation graph for the warehouse. Cutaway views of the navigation graph is shown at various viewpoints.

Fig. 7: A sequence of continuous dynamic autonomy switching for rounding a corner. The operator disagrees with the predicted path (green) from (b) to
(c), and thus a human-parameterized trajectory (blue) is generated. As the prediction aligns again, autonomy resumes (d-e).

IV. EXPERIMENTS

A. Experiment design

The task is to navigate in a densely cluttered warehouse

environment (45m×22m×11m) in simulation following a

path described verbally to the operator and indicated by

yellow arrows, and return to the red landing pad at the origin

as shown in Fig. 6. The operators were also asked to look

out for a randomly placed green box along the path as a

secondary task, in order to simulate attention division similar

to search-and-rescue. The simulated quadrotor is controlled

via a joystick, specifying the forward, side, angular, and z
velocities scaled according to a max velocity parameter, set

to 1.5 m/s. The operator is given a third-person omniscient

view with only the guiding arrows visible (Fig. 8). The

generated trajectory was chosen to be hidden so as to

simulate control without visual aids. This design choice and

its implications will be discussed later in the results section.

The semantically topological navigation graph used for the

proposed method is shown in Fig. 6. Paths extracted from

the graph are approximately 10m in length.

B. User study design

We conduct a pilot study (n=10) to evaluate the pro-

posed method, continous dynamic autonomy (DA) method

against two methods of trajectory-based teleoperation: mo-

tion primitive teleoperation (MP) [2], and a velocity based

teleoperation method (VEL). For all three methods, the

joystick interface remains the same. However, the underlying

dynamics that generates the trajectories are different: DA and

MP both utilize the unicycle model, whereas for the VEL

method, the yaw is decoupled from the heading.

The participants have no prior exposure to our system but

have varying experience with teleoperating quadrotors. The

pilot follows a within-subjects design, where each partic-

ipant used all three methods, A, B, and C. The ordering

of the methods were randomized, such that A, B and C

corresponded to one of VEL, MP, and DA. Prior to each

trial, the participant was given a tutorial period of 3 minutes

to test out the control and dynamics. As the controls required

for all three systems are the same, no additional details were

provided about the controls. However, note that, since the

underlying dynamics that generates the trajectories for MP

and DA are the same, the control during the tutorial period

are exactly the same.

C. Hypotheses

The experiments in this pilot study aims to evaluate

human-robot efficiency by way of operator engagement. The

operator engagement is evaluated by using number of joy-

stick inputs used per trial. Operator preference is evaluated

via a survey post-trial. The hypotheses are:

H1 The system will require less direct human control and

will navigate mostly with autonomy with DA.

H2 Operators will engage with the system less when using

DA, leading to reduced number of inputs during navigation.

H3 Participants will prefer DA over direct control methods

VEL and MP.

V. RESULTS

A. Assistance and Operator Effort

1) Qualitative observations: The operator behavior using

DA, is shown in Fig. 9. The plot highlights (1) The number

of possible path choices during operation, and (2) the oper-

ator’s input and how it agreed with the predicted path. As

the vehicle approaches many decision points, the operator

tends to stop, and proceed with caution. This behavior is
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Fig. 9: Ooperator behavior over time for two select trials, highlighting two observations. 1) The number of path choices/immediate edge choices vs. the
type of motion (shaded), Observe that the vehicle is stopped more frequently near areas of increased path choices. 2) Joystick agreement vs. type of motion.
As prediction and human’s inputs align, vehicle navigates mostly autonomously.
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Fig. 10: Odometry of select participant trials for two participants. (left) VEL (center) MP (right) DA

observed across multiple participants with varying degrees

of cautiousness (high caution is indicated by many stops).

However, this is not limited to DA; it is observed across all

three methods (Fig. 10).

2) Assistance: We categorize motion into 4 modes: (1)

Stop (2) In-place yaw, (3) Z and (4) Nav, which means

that the input provided includes non-zero inputs along the x-

y plane. We primarily focus on Nav, as DA is invoked only

during navigation. Fig. 10 shows some example odometries

of the three methods. We observe that the vehicle is mostly

autonomous for DA. We compute the amount of navigation

done by direct human control. This result is tabulated in

Table I, with an accompanying bar plot in Fig. 11. These

results were assessed using a one-way repeated measures

ANOVA. The results showed that the proposed method was

able to reduce the human’s role in navigation control from

86% to 24.5% (F (2, 34)=88.0, p<.001), strongly supporting

H1. Having assistance allowed shifting navigation from

human-controlled to robot, which increases the human-robot

system efficiency.

TABLE I: Breakdown of odometry in each mode as a percentage of the
total trajectory length. This is visually presented in Fig. 11.

Stop (%) Yaw (%) Z (%) Nav Human (%) Nav Auton. (%)

VEL 5.1± 3.8 0.7± 0.8 2.2± 2.7 92± 5.5 N/A
MP 5.6± 4.7 1.4± 0.6 3.9± 1.7 89.1± 5.8 N/A
DA 7.5± 5.4 2.1± 1.4 4.5± 2.4 24.5± 6.4 62± 7.5

3) Trends in Operator Engagement: The number of inputs

corresponding to each mode is shown in Table II. This results

were assessed using a one-way repeated measures ANOVA.

While we observe that the number of inputs received during

Nav is lower than both of the comparison methods, this data

is not supported by statistical significance and should be

noted as a trend. We believe that this is due to the relatively

small sample size and high variance in the number of inputs.
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Fig. 11: Odometry length, broken down by modes. The human controlled
navigation is reduced significantly, with operator directly controlling navi-
gation approx 24.5% of the time. The tabulated result is in Tab. I.

Thus, H2 could not be supported at this time. However,

this trend combined with confirmed H1 indicates that the

system’s assistance is effective at increasing human-robot

efficiency. To validate this trend, we believe the proposed

method could benefit with a further study with larger sam-

ple sizes to further confirm this hypothesis with statistical

significance.
TABLE II: Number of inputs for the warehouse navigation task

Stop Yaw Z Nav Total

VEL 25± 19 14± 11 18± 14 219± 100 277± 113

MP 47± 57 50± 48 50± 46 238± 134 384± 234

DA 46± 36 31± 21 43± 22 187± 48 307± 115

B. Preference and Qualitative Observations

We additionally evaluate operator preference given the

three methods. The post-trial survey asked the following

questions for each method:

1) I find the controls to be natural/intuitive.

2) I find the controls to be comfortable to use.

3) I was able to stabilize the vehicle with ease.

4) I was able to navigate the vehicle with ease.

5) I was able to avoid obstacles with ease.

6) The vehicle performed the motion that I intended for it

to do.



Natural/Intuitive 

F(2,18)=6.9, p<.01

   Comfortable    

F(2,18)=6.8, p<.01

      Stable      

F(2,18)=5.1, p<.05

   Ease of Nav.   

F(2,18)=5.9, p<.05

   Obst. Avoid.   

                  

   As Intended    

F(2,18)=7.6, p<.01

Strongly Disagree

Disagree

Neutral

Agree

Strongly agree

Participant survey responses

VEL

MP
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Fig. 12: Participant survey responses to various questions regarding use, with each individual method evaluated separately. Participants preferred the
proposed DA method the least given its inability to respond to individual nudges.

The results are shown in Fig. 12, with a strong support

against H3. The trends suggest that the operators preferred

VEL, with the yaw decoupled from the vehicle’s heading.

The proposed method, DA, was thought to be more difficult

to use. This result leads to a subjective vs. objective gap in

DA’s perceived helpfulness. We reason about this gap via the

following observations:

a) Behaviors of naive vs. experienced operators: Naive

operators tend to act more carefully by provide minor

corrections. This is illustrated via “nudging” the system by

flicking the joystick. Experienced operators are well versed

with motion coupling and dynamics of the quadrotor. As the

VEL system is a direct velocity parameterization of their

inputs, they are more likely to prefer this method.

b) Subjective perceptions of operators: We note many

subjective interpretations by the operators for the controls.

For example, some participants remarked that “the controls

(for DA) feels completely different than the previous (MP)”

during the tutorial period. However, the controls and the un-

derlying dynamics are exactly the same. Further, the resulting

odometries of VEL and MP were qualitatively observed to

be drifty and unstable – however, the operators still preferred

them for controllability (Fig. 12). We hypothesize that, if we

show videos of DA, MP and VEL to a separate group and

ask similar questions, they would perceive that DA is more

stable than VEL or MP. We leave this investigations as future

work.

c) Sensitivity of controls: All three methods used the

same set of parameters. Therefore, we attribute remarks on

“sensitivity” to the differing trajectory generation methods:

The participants expected the system to respond to minor

adjustments in inputs. As the local trajectories generated by

DA does not respond to minor adjustments, the participants

remarked this to be unresponsive and difficult to control.

d) Interface design and behavioral changes: The gen-

erated trajectory was not visualized the operators. Therefore,

many operators provided inputs based on what they perceive

the robot will do at the immediate next step, even though

the system’s current trajectory was safe and ideal. We

hypothesize that adding visual feedback of the trajectory

would change the operator’s interaction with the system and

will help to increase “trust“ of the robot, although we leave

further investigations of these hypotheses to future work.

VI. LIMITATIONS AND FUTURE WORK

This paper presents a continuous dynamic autonomy

framework, by generating path predictions on semantic

topological maps. The contributions of this paper are two

folds: 1) path prediction on navigation graphs by way of a

simple receding horizon model; and 2) continuous dynamic

autonomy. This framework shows that complex environments

with dense environment features can be eschewed in favor

of simple representations that encode semantic traversability.

Yet, the work yields some surprising discoveries: While

the human-robot performed efficiently with assistance, oper-

ators did not like having a system that was non responsive to

small input changes. This gives us insight that in generating

human-preferred trajectories, the system should respond to

the small inputs in a meaningful way so as to communicate

trust and acknowledgement. We leave these investigations to

future work.
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