
An Intention Guided Hierarchical Framework for Trajectory-based
Teleoperation of Mobile Robots

Xuning Yang1, Jasmine Cheng2, and Nathan Michael1

Abstract— In human-in-the-loop navigation, the operator’s
intention is to locally avoid obstacles while planning long-
horizon paths in order to complete the navigation task. We
propose a hierarchical teleoperation framework that captures
these characteristics of intention, and generates trajectories
that are locally safe and follow the operator’s global plan.
The hierarchical teleoperation framework consists of 1) a
global path which encapsulates the intended direction of the
operator, 2) local trajectories that circumvent obstacles near
the vehicle’s vicinity while following the global path, and 3)
safety monitoring to avoid possible imminent collisions. By
removing the operator from providing dynamic-level control
inputs and instead having inputs inform trajectory generation,
we show a significant reduction of the operator’s engagement
while maintaining smooth performance.

We showcase hierarchical teleoperation in navigation tasks
in a random forest environment and a high-clutter warehouse
characterized by narrow gaps and dense obstacles. With our
method, we maintain consistent high speed throughout the task
with smooth jerk profiles, decreased time to completion, and
significantly reduced operator engagement.

I. INTRODUCTION

Teleoperation in unstructured environments for tasks such
as navigation or exploration requires operators to 1) ma-
neuver the vehicle with safety and dynamic feasibility to
avoid collisions and 2) plan global paths that achieve the
objective. In critical situations where the vehicle is travel-
ing fast through dense obstacles, fast reactivity and high-
frequency engagement is required to mitigate collisions.
The operator must balance generating reactive motions that
evade obstacles, and long-term path planning in order for
task completion. Therefore, completing the task under these
circumstances requires increased mental acuity and high-
level engagement from the operator in order to stay safe.

For navigation tasks in unstructured environments, the
operator’s intention is characterized according to the above
requirements: to locally avoid obstacles while generating
dynamically safe motions, and planning long-horizon paths
for task completion. In this work, we present a trajectory-
based teleoperation framework that captures the hierarchical
nature of operator’s intention while removing the operator
from the responsibilities of safety, reactivity and dynamic
feasibility. The proposed framework continuously generates
local trajectories that follows a global path, which, in the
teleoperation context, encapsulates the operator’s intended
direction over longer time horizons as illustrated in Fig. 1.
The hierarchical design of the proposed framework naturally

1Xuning Yang and Nathan Michael are with the Robotics Insti-
tute, Carnegie Mellon University, Pittsburgh PA 15232, USA {xuning,
nmichael}@cmu.edu

2Jasmine Cheng is with the School of Computer Science, Carnegie
Mellon University, Pittsburgh PA 15232, USA jacheng@andrew.cmu.edu

Fig. 1: Illustrations for the proposed hierarchical teleoperation framework
in two example scenarios. Operator’s intention, reflected in the global
path, guides local trajectory generation. Top: the vehicle avoids obstacles
following a linear motion. Bottom: The intention to round a corner is
reflected in the global path, which triggers a local trajectory regeneration.

Fig. 2: A sequence of the hierarchical teleoperation framework in action
in the random forest environment. In this snapshot, the global trajectory
(in grey) represents a forward linear motion. The local trajectory generator
generates candidate trajectories (in magenta). The vehicle (in blue) follows a
chosen trajectory and successfully passes through a narrow gap and returns
to follow the global path.

corresponds to the spectrum of intentions that would oth-
erwise require increased focus and continuous engagement
from the operator.

The hierarchical teleoperation framework consists of three
components: 1) global path generation using a directional
intention model informed by the operator’s inputs; 2) a
local trajectory generator that generates dynamically feasible
snap-continuous trajectories that circumvent obstacles while
following the global path; and lastly, 3) a safety monitoring
system that continuously monitors imminent collisions. The
inputs are processed such that linear motions such as yaw and
stop are directly executed while other inputs (representing
navigation) inform the trajectory generation process. This
allows the operator to retain natural control of vehicle with
while reducing necessary engagement from the operator in
order to achieve the task while maintaining consistent high

Fig. 3: Snapshot of the hierarchical teleoperation framework in action in the warehouse environment. Top left: An overhead view of the resulting odometry
(in yellow) starting near the entryway of the warehouse and exploring clockwise. Bottom left: Highlighting a section of the trial where the vehicle encounters
two difficult scenarios: (A) through a partially collapsed shelf and (B) return to the origin by going through two shelves with low clearance. In those two
scenarios, the global guiding path (in grey) allows generation of candidate local trajectories (in magenta). The selected trajectory (in blue) successfully
leads the vehicle through narrow gaps in the highlighted scenarios.

speeds, especially during critical navigation scenarios, as
shown in Fig. 2-3.

We test the proposed teleoperation frameworks in two
tasks: Navigating a quadrotor in various density random
forest environments where the operator is asked to follow
a straight line, and navigating in a cluttered warehouse char-
acterized by narrow gaps and irregular free space formed by
collapsed shelves. With the proposed method, the operators
are able to complete the task with a significant reduction
in engagement while maintaining consistent high speed and
smoother jerk profiles.

II. RELATED WORKS

1) Trajectory-based teleoperation: In traditional multiro-
tor UAV teleoperation, the operator typically issues low-
level inputs to the vehicle according to the vehicle dy-
namics, requiring experience in teleoperation to maintain
stability [1]. Previous works exploit the differentially flat
properties of multirotors to allow direct teleoperation in the
state space with reactive collision avoidance [2]. However,
reactive methods still rely on the operator to navigate ve-
hicle around obstacles. Recent trajectory-based teleoperation
methods generate trajectories that locally circumvent obsta-
cles, reducing operator engagement around immediate obsta-
cles [3]. In these works, the global intention is not considered
and thus they require continuous operator engagement to
complete the task.

2) Hierarchical planning: Global-local planning architec-
tures have been deployed in autonomous systems for global
navigation and local collision avoidance for both UAVs [4, 5]
and ground robots [6–9]. These methods usually depend
on a pre-specified goal location and select trajectories that
most closely follow the global path. In navigation-based

teleoperation tasks where an operator is directly controlling
the vehicle, the goal may not be specified a priori. Therefore,
the global path in the teleoperation context can be interpreted
as a representation of the operator’s intended path, and local
trajectories can be interpreted as a set of sequential actions
to follow the intended path.

III. PRELIMINARIES

Multirotors are differentially flat systems [10]. Exact con-
trol inputs can be computed such that the vehicle follows a
specified trajectory in the flat outputs x, y, z, and yaw θ.
Define the state to be x=[x, y, z, θ]. A trajectory is a time-
parameterized function Γ (t), defined over a time interval
t ∈ [0, T] that maps a given time t to a state xt.

For teleoperation, the operator provides inputs with respect
to a level frame C, which is defined as a world-z-aligned
frame rigidly attached to the vehicle’s origin. The inputs are
given in the form of a=[vx, ω, vz]

> via a joystick, where vx
is the linear velocity along the level frame xC-axis, ω is the
angular velocity about the level frame zC-axis, and vz is the
velocity along the level frame zC-axis.

A motion primitive γ(t) is a parameterized trajectory
function which generates a unique sequence of states in the
world frame given an initial state x0 ∈ X and an input a ∈ A
according to specific dynamics:

γa,T : [0, T]→ X a ∈ A, T ∈ [0,∞) (1)

A choice of motion primitive is to use the unicycle model
to evolve the state [11]:

ḟa(t) = [vx cos(ωt) vx sin(ωt) vz ω]>, t ∈ [0, T] (2)

However, this model does not provide higher order refer-
ences. Since attitude references can be directly computed

from higher order derivatives of the flat outputs, we compute
an eighth order polynomial with continuity between subse-
quent primitives up to snap. Further, the references generated
using Eq. (2) with input a would need to be transformed
from the level frame C to the appropriate frame of control,
e.g., the world frame W . Therefore, the motion primitive γ
is generated as follows:

Given an initial state x0 and its higher order derivatives
ẋ0, ẍ0,

...
x0,x

(4)
0 , the polynomial is generated with veloc-

ity endpoints constrained according to the unicycle model
Eq. (2):

γa,T (t) =

8∑
i=0

cit
i (3)

s.t. γ(j)(0) = x
(j)
0 (t) for j = 0, 1, 2, 3, 4

γ̇(T) = Rt
W
C ḟa(T)

γ(j)(T) = 0 for j = 2, 3, 4

where {·}(j) specifies the jth time derivative and Rt
W
C

is the transformation from C to W at time t. This is a
fully constrained system of linear equations, and thus the
coefficients ci can be computed in closed form.

A sequence of N motion primitives is given by:

ξ = (γ1, . . . , γN) = (γi)
N
i=1 (4)

The total duration of the motion primitive sequence is given
by T =

∑N
i=1 Ti, where Ti is the duration of the ith

primitive. The trajectory function for a sequence of motion
primitives is defined as:

Γ (t) = γi(t− τi−1) t ∈ [τi−1, τi) (5)

where τi is the cumulative duration up to primitive i.

IV. METHOD

The hierarchical teleoperation architecture is shown in
Fig. 5. The three components, global path generation, local
trajectory generation and safety monitoring, run in parallel
with increasing frequencies, and trigger regeneration accord-
ing to the logic flow in Fig. 6.

The current architecture assumes the availability of a map
for the purposes of collision checking. For this paper, we
utilize a KD-Tree local map representation [2]. The existence
of various map representations can be readily incorporated
into this framework as discussed in Sect. VI.

A. User Input Processing

Inputs from the operator are received as a continuous
stream of joystick values around 200Hz. A novel input

Fig. 4: Motion Primitive Library constructed with forward arc primitives.
The variations in angular velocity, z velocity, and linear velocity are added
incrementally for maximum clarity.

Fig. 5: System diagram of the proposed framework. The teleoperation
framework takes in a continuous stream of inputs from an user-operated
joystick, and generates a trajectory to be sent to the controller. Inputs are
processed and sent to the planning pipeline.

Fig. 6: Logic flow diagram for the proposed hierarchical teleoperation
framework during navigation tasks.

is defined as an input that remains constant for at least
100ms. Only novel inputs are retained and the rest discarded;
hence the term “novel inputs” is used interchangeably with
“operator inputs” or “inputs”. In order to allow operators
to remain in control, inputs are categorized as pure yaw,
zero input, or navigation. For pure yaw and zero inputs, a
direct linear trajectory is sent to the controller bypassing
the rest of the system, as they do not correspond to the
task of navigation. The navigation inputs are passed onto
the hierarchical planning framework.

B. Global Planning

To reflect the long horizon motion that the operator
intends to achieve, we utilize a simplified intention model
based on previous navigational inputs as follows: First, the
navigational inputs are filtered to produce a likely global
input aGt at time t given current input at:

aGt = λaGt−1 + (1− λ)at 0 < λ < 1 (6)

Then, a global trajectory ΓG is generated according to Eq. (2)
with a duration of T. As the global path is only used for
guidance, any higher order dynamics of the trajectory can
be safely ignored. For our experiments, we choose a horizon
of T=10s and λ=0.8.

C. Local Trajectory Generation

1) Trajectory generation: The operator’s input is first
parameterized as a single-step motion primitive. If the motion
primitive is in collision, we utilize a trajectory generation
method to circumvent the immediate obstacle. We generate
a candidate set of trajectories by constructing a motion
primitive tree using Biased Incremental Action Sampling
(BIAS) [3] given a local map representation. BIAS iteratively
builds a tree of sequential motion primitives that minimizes
an objective. The objective cost function for teleoperation is
a weighted combination of the local direction and behavior

Fig. 7: Illustration of new trajectory selection based on weighted discrete
Fréchet distance (DFD). Each candidate trajectory is sampled and DFD is
computed between the candidate and global path and local trajectory. In this
example, candidate B scores the lowest DFD and is sent to the controller.

cost functions. The local direction cost function evaluates
the dot product between a candidate trajectory and the ideal
primitive:

Cinputa(ξ) = ‖1− p · p∗‖ (7)

p =
Γ (T)− Γ (0)

‖Γ (T)− Γ (0)‖
p∗ =

γa(T)− γa(0)

‖γa(T)− γa(0)‖
(8)

where Γ (τ) is the multi-step motion primitive trajectory
evaluated at time τ , and γa(τ) is the single-step motion
primitive parameterized by the operator’s given input a
evaluated at time τ . Therefore, γ is exactly the motion
primitive in collision as generated in the previous section, so
as to maximize adherance to the operator’s intended input.
The behavior cost functions and the BIAS algorithm are
discussed in [3].

2) Trajectory selection: Given a set of candidate trajecto-
ries, we select the trajectory to be followed by the vehicle.
We balance two objectives: maximize smoothness in transi-
tioning from the current vehicle trajectory, and minimize its
distance to the global guiding path. To do so, we introduce
a selection cost function that evaluates each trajectory by its
closeness to both the current local trajectory and the global
path by evaluating the discrete Fréchet distance δdF [12, 13].
We provide a brief definition below.

Consider a discrete sampling of two continous functions f
and g that forms two polygonal curves P = {f1, f2, ..., fn}
and Q = {g1, g2, ..., gm} which are sequences of n and m
discrete points, respectively. An order-preserving, complete
correspondence between P and Q is a pair (α, β) of discrete
monotone reparameterizations 1 of α from {1, ..., k} to
{1, ..., n} and of β from {1, ..., k} to {1, ...,m}. The discrete
Fréchet distance of P and Q is given by:

δdF (f, g) := min
(α,β)

max
i∈[1,k]

d(fα(i), gβ(i)) (9)

where (α, β) ranges over all order-preserving complete cor-
respondences between P and Q. Therefore, the Fréchet
distance for a pair of time parameterized trajectories Γ,Φ

1A discrete monotone reparameterization α from {1, ..., k} to {1, ..., l}
is defined as a non-decreasing function α : {1, ..., k} → {1, ..., l} for
integers k ≥ l ≥ 1, with α(1) = 1, α(k) = l, and α(i + 1) ≤ α(i) +
1 ∀ i = 1, ..., k − 1.

is given by

δdF (Γ,Φ) := min
(α,β)

max
i∈[1,k]

d(Γα(i), Φβ(i)) (10)

where Γi = Γ (i ·∆t) for a fixed ∆t sampling of Γ .
The trajectory selection is then as follows: Given the

current local trajectory ΓL and the guiding global trajectory
ΓG, and a candidate set of trajectories {Γi}Ni=1,

Γ ∗ = min
Γ∈{Γi}Ni=1

wLδdF (Γ, ΓL) + wGδdF (Γ, ΓG) (11)

We select wL=wG=1. An illustration of the trajectory se-
lection process is shown in Fig. 7.

D. Safety monitoring

1) Trajectory Safety: The size of the local map is de-
pendent on the accuracy range of the sensors in exploring
unknown environments. As such, this range is sometimes
limited. Therefore, the unknown space is treated as free space
during trajectory generation with the trajectories possibly
extending beyond the size of the local map. As the vehicle
moves, the local map is being updated on a rolling basis with
incoming new sensor scans. Therefore, the current trajectory
is continually checked against the updated map for collisions.

2) Imminent collision monitoring: The imminent collision
checking system continuously monitors vehicle safety given
its current velocity and environment. The motion primitives
for teleoperation, by design, end in non-zero velocity; there-
fore, if map updates render the newly observed area unsafe
and a new trajectory is unable to be generated in time
according to the navigation objective, a safe, dynamically
feasible stop trajectory is generated that brings the vehicle
from in-motion to at-rest.

To determine whether an imminent collision will occur,
we first find the set of possible collision points nearby by
evaluating the normalized vector projection between a set of
closest obstacle locations given by the map and the vehicle
velocity:

proj(x,p) =

〈
ẋ

‖ẋ‖
,

p− x

‖p− x‖

〉
=

〈
ẋ

‖ẋ‖
,

r

‖r‖

〉
Where x, ẋ is the vehicle position and velocity respectively,
and the vector to an obstacle point p is r = p − x. The
points away from the direction of motion, e.g., proj(x,p)<0
are discarded. Then, a combined stop criteria is computed
for the remaining points {p} using distance to the obstacle,
speed, and the angle offset:

Cstop(x,p) = w1 ‖r‖ − w2 ‖ẋ‖+ w3 arccos(proj(x,p))

if proj(x,p) >= 0

An imminent stop trajectory is issued if for any obstacle
point p, Cstop(x,p)<0. In our experiments, w1, w2 and w3

are chosen to be 0.5, 0.3, 1.2 respectively. To generate an
imminent stop trajectory, an initial group of escape points
{e} is generated using a uniform grid, then sampled along
the direction of motion using stratified sampling for points
near the vehicle’s original heading via the following cost:

Cescape(x, e) = w1q + w2d

Fig. 8: Illustration of imminent collision monitoring and safe stop. (A) Initial assessment: possible collision points are obtained from nearby obstacles
by querying the map and assessed using Cstop. If the stop criterion is met, stop trajectory generation begins. (B) Initial grid of escape points with costs
computed and colliding points discarded (C) A stratified sampling method is used to downsample the possible escape points, with candidate trajectories
generated. Dynamically infeasible candidate trajectories are discarded. (D) Lowest cost, dynamically feasible trajectory is selected and sent to the controller.

Where q=||(x−e−((x−e)·ˆ̇x)ˆ̇x|| is the shortest distance
from the escape point e to the line l(s)=ˆ̇xs+x along the
velocity vector, ˆ̇x is the normalized velocity vector, and d is
the distance from the the escape point to its nearest obstacle.
The stratified method guarantees a set of points with both
high and low costs such that in the event low cost trajectories
are not dynamically feasible, we are able to sacrifice cost for
dynamic feasibility. Stopping trajectories are then generated
starting with the lowest Cescape and checked for safety and
dynamic feasibility via an acceleration bound along the
trajectory, i.e., ẍ<ᾱ. For our experiments, we select ᾱ =
10m/s2. An illustration of this process is shown in Fig. 8.

V. EXPERIMENTS AND RESULTS

We evaluate our method in a simulated random forest
environment and in a dense realistic warehouse environment,
where the operator is asked to perform a navigation task
by following a global path described to the operator. The
operator is given a third-person follower view of the vehicle.
Each task is repeated with five trials in each environment.
The simulated vehicle is a high fidelity quadrotor model with
an effective diameter of 30.6cm. The simulated experiments
are performed on a CPU (Intel Core 2.20GHz i7-8750H
CPU), with 16GB of RAM.

The proposed method is compared to direct motion prim-
itive teleoperation (MP) [2], which is a one-step motion
primitive, as well as multi-step trajectory generation via
motion primitive trees (MPT) [3]. All three methods are
equipped with the imminent collision monitoring system. An
example trial of the collision monitoring and prevention in
the warehouse scenario is shown in Fig. 9. The stopping
trajectory quicky stops vehicle before possible collisions and
allows the vehicle to escape.

A. Evaluation Criteria

The following criteria are used: 1) time to completion, 2)
smoothness by evaluation of the jerk integral, and 3) operator

engagement by evaluation of the number of novel inputs
over the fixed task. Further, for the warehouse scenario,
we additionally evaluate 4) the average velocity. The key
metric is operator engagement. If the number of new inputs
is high, this indicates that operators feel the need to control
the vehicle in order to correct its course. Alternatively, if
the number of new inputs is low, it implies that the vehicle
is following course on its intended trajectory and does not
require correction to its motion.

B. Random Forest

The random forest environment contains 120 various-
height pillars in a 60m×30m×10m volume. The operator
is asked to navigate through the random forest environment
following a straight line path that passes through many
pillars. The vehicle begins on one side of the random forest,
and the task is marked complete as soon as the vehicle
reaches the other side of the random forest.

The results are tabulated in Table I. Overall, the tasks
are complete within reasonable time. We observe that the
proposed method maintains a jerk integral of 25m2/s3 for
all three density environments, whereas previous methods
show an increase in jerkiness depending on the density. We
also observe a significant decrease in the number of joystick
inputs to complete the trial: the proposed method shows a
89%, 82%, 92% reduction from the baseline motion primitive
method for the sparse, medium and dense environments
respectively. We also observe that the number of inputs
required to complete the random forest environment remains
constant, regardless of the density of the environment as
shown in Fig. 11. For the single-step method, the number
of inputs increases significantly in the dense environment.
However, for trajectory-based methods, this is reduced as
the trajectories allows the vehicle to maneuver through high
clutter areas without frequent operator engagement.

Fig. 9: Trial run in the warehouse environment with imminent collision checking enabled. Left: Vehicle odometry with queried obstacles. Locations A, B,
C indicate where stopping trajectories were issued corresponding with the left plot. Right: Stopping trajectories are issued when stop cost drops below a
threshold, ensuring that the vehicle is safe. The operator recovers the vehicle with an in-place yaw before normal flight is resumed.

Fig. 10: Sequence of the passage through the collapsed shelf, from left to right. Trajectory currently following (in blue) leads to a collision, and trajectory
generation is triggered resulting in candidate trajectories (in magenta) being generated. Light grey trajectory highlights the global path that guides the
trajectory generation process, which adapts over time as the vehicle moves.

TABLE I: Results for three different density random forest environments
Approach Sparse Medium Dense

Time to completion (s)
MP (single-step) 38.84± 1.08 37.06± 0.50 37.95± 1.91
MPT (multi-step) 39.45± 1.43 36.40± 1.99 37.55± 2.34
Hierarchical 38.10 ± 3.96 33.4 ± 1.44 34.73 ± 1.35

Jerk Integral (m2/s3)
MP (single-step) 28.41± 2.88 26.72± 4.30 50.14± 7.38
MPT (multi-step) 18.96± 5.05 25.32± 4.32 33.75± 2.77
Hierarchical 25.10 ± 18.10 23.12 ± 10.42 25.94 ± 7.96

Number of operator inputs to complete the trial
MP (single-step) 192± 27 147± 45 421± 67
MPT (multi-step) 44± 12 38± 9 58± 10
Hierarchical 21 ± 12 27 ± 12 35 ± 10

sparse medium dense

100

200

300

400

N
u
m

.
o
p
e
ra

to
r

in
p
u
ts mp (single step)

mpt (multi-step)

hierarchical (proposed)

Fig. 11: Number of operator inputs as a function of the environment density
for the random forest scenario, visualized. The number of inputs required
to complete the task remains constant for the proposed method regardless
of the density of the environment.

C. Warehouse

The warehouse environment is a large room with dimen-
sions of 44.81m×22.17m×11m. The room contains three
rows of industrial shelves, with a large shelf partially col-
lapsed over and scattered objects surrounding the collapsed
shelf, as highlighted in Fig. 3. The operator is asked to
navigate in the warehouse following a rectangular path and
through the collapsed shelf, which has a maximum clearance
of 0.6m, and return to approximately close to the origin,
which would require a narrow pass through between two
horizontal shelves. The task is marked complete as soon
as the vehicle completes the desired pathway and reaches
within 1m of the origin. The difficulty of this experiments is
highlighted in the high density clutter near the shelves and
changes in direction, as shown in Fig. 10.

The results are tabulated in Table II. We highlight that
while all three methods allow the operator to safely complete
the task, the proposed hierarchical teleoperation method is
able to do so with 63% and 17% less number of inputs,
which is a significant reduction of operator engagement.
The single-step and multi-step requires on avg. 175 and 77
inputs respectively, whereas the proposed method requires
only 64. While the multi-step method is comparable, the
multi-step method takes 15 seconds longer to complete the
task than the proposed method for the approximately same
distance travelled with a reduced average velocity of 1.48m/s,
compared to the proposed method’s 1.85m/s. This is due
to the fact that the multi-step optimizes for finite-horizon
navigation such that a rapid direction change would require
the vehicle to slow down significantly to turn the corner, then
speed up. The single-step method performs comparatively to
the proposed method in terms of task completion duration
and average velocity. However, we are able to achieve the
same level of performance with a 63% reduction in the
number of inputs required.

VI. CONCLUSION AND FUTURE WORK

This paper presents a hierarchical teleoperation framework
for mobile robot navigation in unstructured environments,
informed by the operator’s intention. We show our method
in teleoperation tasks navigating in densely cluttered random
forest and warehouse environments characterized by narrow
gaps and unstructured free space. The proposed method
completed the navigation task with consistently high average
speeds while requiring the least operator engagement.

The hierarchical teleoperation framework can be readily
extended in a few ways. The hierarchical formulation of
the global and local planning allows a natural extension to
interface with global and local map representations, such that
the global plan incorporates environment features. Further,
various types of local map representations can be adapted.
Lastly, a more sophisticated operator intention model can be
used to inform the trajectory generation process.

TABLE II: Results for the warehouse environment
Approach Distance (m) Duration (s) Avg. Vel. (m/s) Jerk integral (m2/s3) Num. Inputs
MP (single-step) 82.126± 0.92 47.778± 0.503 1.772± 0.041 47.475± 21.328 175± 30
MPT (multi-step) 85.07± 3.95 59.73± 3.23 1.48± 0.08 78.21± 11.72 77± 19
Hierarchical (proposed) 80.67 ± 4.63 44.85 ± 0.93 1.85 ± 0.04 31.19 ± 6.81 64 ± 6

REFERENCES

[1] M. Nieuwenhuisen, D. Droeschel, J. Schneider,
D. Holz, T. Läbe, and S. Behnke, “Multimodal obstacle
detection and collision avoidance for micro aerial vehi-
cles,” in 2013 European Conference on Mobile Robots.
IEEE, 2013.

[2] A. Spitzer, X. Yang, J. Yao, A. Dhawale, K. Goel,
M. Dabhi, M. Collins, C. Boirum, and N. Michael,
“Fast and agile vision-based flight with teleoperation
and collision avoidance on a multirotor,” in Int. Sym.
on Exp. Robot. (ISER). Springer, 2018.

[3] X. Yang and N. Michael, “Assisted mobile robot teleop-
eration with intent-aligned trajectories via biased incre-
mental action sampling,” 2020 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS),
2020.

[4] M. Hwangbo, J. Kuffner, and T. Kanade, “Efficient two-
phase 3d motion planning for small fixed-wing uavs,”
in Proceedings 2007 IEEE International Conference on
Robotics and Automation. IEEE, 2007, pp. 1035–1041.

[5] M. Nieuwenhuisen and S. Behnke, “Hierarchical plan-
ning with 3d local multiresolution obstacle avoidance
for micro aerial vehicles,” in ISR/Robotik 2014; 41st
International Symposium on Robotics. VDE, 2014,
pp. 1–7.

[6] A. R. Diéguez, R. Sanz, and J. Lopez, “Deliberative on-
line local path planning for autonomous mobile robots,”

Journal of Intelligent and Robotic Systems, vol. 37,
no. 1, pp. 1–19, 2003.

[7] P. Sermanet, R. Hadsell, M. Scoffier, M. Grimes, J. Ben,
A. Erkan, C. Crudele, U. Miller, and Y. LeCun, “A
multirange architecture for collision-free off-road robot
navigation,” Journal of Field Robotics, vol. 26, no. 1,
pp. 52–87, 2009.

[8] D. Ferguson, T. M. Howard, and M. Likhachev, “Mo-
tion planning in urban environments,” in The DARPA
Urban Challenge. Springer, 2009, pp. 61–89.

[9] A. Stentz and M. Hebert, “A navigation system for goal
acquisition in unknown environments,” in Intelligent
Unmanned Ground Vehicles. Springer, 1997, pp. 277–
306.

[10] D. Mellinger and V. Kumar, “Minimum snap trajectory
generation and control for quadrotors,” in 2011 IEEE
international conference on robotics and automation.
IEEE, 2011, pp. 2520–2525.

[11] M. Pivtoraiko, R. A. Knepper, and A. Kelly, “Differen-
tially constrained mobile robot motion planning in state
lattices,” J. Field Robot., 2009.

[12] T. Eiter and H. Mannila, “Computing discrete fréchet
distance,” Citeseer, Tech. Rep., 1994.

[13] B. Aronov, S. Har-Peled, C. Knauer, Y. Wang, and
C. Wenk, “Fréchet distance for curves, revisited,” in
European Symposium on Algorithms. Springer, 2006,
pp. 52–63.

	Introduction
	Related Works
	Trajectory-based teleoperation
	Hierarchical planning

	Preliminaries
	Method
	User Input Processing
	Global Planning
	Local Trajectory Generation
	Trajectory generation
	Trajectory selection

	Safety monitoring
	Trajectory Safety
	Imminent collision monitoring

	Experiments and Results
	Evaluation Criteria
	Random Forest
	Warehouse

	Conclusion and Future Work

