
An imminent collision monitoring system with safe stopping
interventions for autonomous aerial flights

Jasmine Cheng, Xuning Yang and Nathan Michael

Abstract— Collision avoidance requires tradeoffs in planning
time horizons. Depending on the planner, safety cannot always
be guaranteed in uncertain environments given map updates.
To mitigate situations where the planner leads the vehicle into
a state of collision or the vehicle reaches a point where no
trajectories are feasible, we propose a continuous collision
checking algorithm. The imminent collision checking system
continuously monitors vehicle safety, and plans a safe trajectory
that leads the vehicle to a stop within the observed map. We test
our proposed pipeline alongside a teleoperated navigation in a
random-forest environment and a realistic warehouse method
and show that with our method, we are able to mitigate
collisions with a success rate of at least 90%.

I. INTRODUCTION

In tasks such as navigation and exploration in dense
environments, static and dynamic collision avoidance require
trade-offs in planning time horizons. Planning at a high
frequency results in increased demand for computation at
unrealistic rates, while planning at low frequencies may
result in inaccurate plans if map updates between plan-
ning iterations. This work seeks to improve aerial vehicle
resilience and robustness in a variety of environments by
introducing a safety monitoring system that can supplement
any autonomous or semi-autonomous aerial system. Prior
work has explored collision avoidance and replanning with
respect to goal-seeking, where the vehicle is autonomously
controlled and the goal is known a priori [1]. The proposed
method mitigates possible collisions at map update rate in
a lightweight way using the vehicle state, preventing the
vehicle from reaching an unrecoverable state in situations
where the planner fails to mitigate the collision in time.

The proposed system prevents collisions by continuously
monitoring collision safety and generating a stopping trajec-
tory if the vehicle is at risk of collision. This system is first
included in [2]. In this work, we demonstrate the imminent
collision monitoring system in a variety of scenarios and
show its applicability and robustness with respect to a wide
variety of vehicle and environment conditions. We show that,
with the inclusion of the proposed system across a variety of
autonomous/semi-autonomous flights, we are able to detect
unsafe states and safely avoid collisions.

II. METHOD

The proposed method proceeds as follows: the system
continuously monitors collision possibility by evaluating the
closest obstacles to the vehicle’s current location at a fixed
rate. Then, we generate a dynamically feasible and safe
trajectory and bring the vehicle to a stop by first selecting an

The Authors are with the Robotics Institute at Carnegie Mellon Univer-
sity, Pittsburgh PA, 15213, USA {xuning, nmichael}@cmu.edu

Fig. 1: Trajectory-based teleoperation, current trajectory is collision free,
but imminent collision after the trajectory.

escape point along the direction of motion, then generating
a trajectory to the escape point. The method is detailed as
follows.

A. Imminent collision checking

We first find the set of possible collision points nearby by
evaluating the normalized vector projection between a set of
closest obstacle locations {p} given by a known map and
the vehicle velocity:

proj(x,p) =

〈
ẋ

‖ẋ‖
,

p− x

‖p− x‖

〉
=

〈
ẋ

‖ẋ‖
,

r

‖r‖

〉
Where x, ẋ is the vehicle position and velocity respectively,
and the vector to an obstacle point p is r = p − x. The
points away from the direction of motion, e.g., proj(x,p)<0
are discarded.

Then, for all points {p} in remaining set, we compute a
combined stop criterion based on distance to the obstacle,
speed, and the angle offset:
Cstop(x,p) = w1 ‖r‖ − w2 ‖ẋ‖+ w3 arccos(proj(x,p))

if proj(x,p) >= 0

The third term represents the relative angle difference
between the heading of the vehicle and the direction of
the obstacle point, as shown in Figure 3. A imminent stop
trajectory is issued if for any obstacle point p, Cstop(x,p) <
β.

B. Escape points sampling

Escape points are defined as possible goal points where
the vehicle could stop. We first generate escape points and
then plan trajectories to them. The first feasible trajectory
incurring the lowest cost is sent to the controller. Thus, to
minimize search time, we aim to check escape points that
are more likely to produce feasible trajectories.

An initial group of escape points {e} is generated using
a uniform 3D grid, scaled proportionally to the vehicle’s
velocity. Points are sampled along the direction of motion
using stratified sampling for points near the vehicle’s original
heading via the following cost:

Cescape(x, e) = w1q + w2d

Where q=||(x−e−((x−e)·ˆ̇x)ˆ̇x|| is the shortest distance
from the escape point e to the line l(s)=ˆ̇xs+x along the
velocity vector, ˆ̇x is the normalized velocity vector, and d is
the distance from the the escape point to its nearest obstacle.

Fig. 2: Illustration of imminent collision monitoring and safe stop. (A) Initial assessment: possible collision points are sampled from nearby obstacles and
vectors to collision are assessed. If high concern vectors exist, stopping trajectory generation begins. (B) Initial grid of escape points with costs computed
and colliding points discarded (C) A stratified sampling method is used to down sample the possible escape points, with candidate trajectories generated.
Dynamically infeasible candidate trajectories are discarded. (D) Lowest cost, dynamically feasible trajectory is selected and sent to the controller.

First, points farther from obstacles are lower cost to
encourage the vehicle towards an area with more free space.
Second, points closer to the vehicles velocity vector are given
lower costs. Points farther from the vehicles path require the
robot to turn severely, which results in undesirable dynamics.

Next, points are downsampled before trajectory generation
via stratified sampling, which samples a fixed number of
points from each strata based on cost. To ensure enough
high quality points are chosen, more points are sampled from
higher strata (low cost). In this implementation, 10 points
are sampled from top 1%, 40 points from next 9%, 30 from
next 40% and 20 from bottom 50%. The stratified method
guarantees a set of points with both high and low costs such
that in the event low cost trajectories are not dynamically
feasible, we are able to sacrifice cost for dynamic feasibility.

C. Stopping trajectory generation

Given the set of escape points, we generate candidate stop
trajectories starting with the lowest Cescape.

A trajectory is a time-parameterized function ξ(t), defined
over a time interval t ∈ [0, T] that maps a given time t to
a position xt. A stop trajectory is a trajectory that brings a
vehicle from in-motion to at-rest:

s.t. ξ : [0, T]→ X

ξ(j)(T) = 0, j > 0

ξ ∈ Ξsafe

A single polynomial trajectory is computed by solving
an 8th order polynomial on the current vehicle state and
desired vehicle state. The current vehicle state is defined by
the current position, velocity, acceleration, and jerk in each
dimension (x, y, z, yaw). The desired state is the position of
the escape point, with all higher-order derivatives of 0. Each
dimension’s polynomial is computed independently.

Fig. 3: (A) Vehicle is heading in the direction of an obstacle. Vehicle is
in higher risk of collision, Cstop is lower. (B) Vehicle is heading between
obstacles/ Vehicle is in lower risk of collision, Cstop higher.

We solve for the coefficients, ci, of the polynomial

f(x) =

8∑
i=0

cixi

with constraints
f(0) = x0, ḟ(0) = v0, f̈(0) = a0, f

(3)(0) = j0

f(t) = xf , ḟ(t), f̈(t), f (3)(t) = 0

where x0, v0, a0, j0 are the initial state and xf is the final
position given by the escape point.

Next, the trajectory is interpolated and waypoints are
checked against a known map to ensure it is collision-free.
The trajectory is also checked for dynamic feasibility via an
acceleration bound along the trajectory, i.e., ẍ<ᾱ. For our
experiments, we select ᾱ = 10m/s2.

The first trajectory that is safe and feasible is executed,
and the search stops. If all potential escape points have been
exhausted without finding a valid trajectory, then a stopping
trajectory with no goal position is executed as a last effort.

III. EXPERIMENT AND RESULTS

We evaluate our method in a simulated random forest
environment and in a dense realistic warehouse environment
in a teleoperated navigation task minimizing time. We con-
duct 20 trials in each environment, 10 with the proposed
pipeline enabled, and 10 without. In our experiments, the
stop criterion parameters w1, w2, w3, β are chosen to be
0.6, 0.4, 1.2, 0.3 respectively.

We discuss task completion with and without enabling
collision monitoring in Table I. With collision avoidance
enabled, the operator completes the task with a success rate
of 90% for the forest scenario and 100% for the warehouse
scenario. When collision monitoring is disabled, the vehi-
cle collides under aggressive flight, leading to 20% task
completion rate. The average velocity of enabled collision
monitoring is comparable to disabled collision monitoring,

Algorithm 1: Stopping Trajectory Generation
Input: Vehicle position x and sample set of points S

1 for s ∈ S do
2 Compute Cescape;

3 Sescape:=StratifiedSample(S);
4 sort(escapePoints, Cescape);
5 for ei in Sescape do
6 ξ:=SolvePolynomial(x, ei);
7 if feasible(ξ) and collisionFree(ξ) then
8 executeTrajectory(ξ);

Fig. 4: Trial run in the warehouse environment with imminent collision checking enabled. Left: Vehicle odometry with queried obstacles. Locations A, B,
C indicate where stopping trajectories were issued corresponding with the left plot. Right: Stopping trajectories are issued when stop cost drops below a
threshold, ensuring that the vehicle is safe. The operator recovers the vehicle with an in-place yaw before normal flight is resumed.

Fig. 5: Trial run in the random forest environment with imminent collision checking enabled. Left: Vehicle odometry with queried obstacles, locations in
red indicate where stopped trajectories were issued. Left: Similarly to Figure 4, stopping trajectories are issued when the stop cost reaches a threshold,
corresponding with high velocity and low clearance.

Fig. 6: Testing scenarios. (left) Random forest environment. (right) Ware-
house environment.

TABLE I: Task completion with and without collision monitoring
Scenario Success rate Velocity (m/s) Distance (m) Min Distance (m)
Forest
Enabled 90% 1.37± 0.18 1.61± 0.11 0.54± 0.13
Disabled 20% 1.69± 0.18 1.44± 0.22 0.39± 0.16
Warehouse
Enabled 100% 1.73± 0.07 1.89± 0.11 0.47± 0.08
Disabled 20% 1.80± 0.15 1.82± 0.20 0.32± 0.13

TABLE II: Results for trials with collision detecting enabled
Environment # Stops Issued Velocity (m/s) Obstacle Distance (m)
Forest 6± 1 1.84± 0.12 1.39± 0.09
Warehouse 4± 1 1.97± 0.04 1.37± 0.08

but the vehicle safety is maintained. “Distance” refers to
the average distance from obstacles throughout the entire
trial, while “Min Distance” is the minimum distance from
an obstacle on a given trial.

Table II shows the average number of stops issued over the
course of completing task with collision monitoring enabled.
In the forest scenario, we prevent 6 potential collisions on
average. In the warehouse scenario, we prevent 4 potential
collisions. The table shows the vehicle velocity and obstacle
distance conditions that trigger these stops.

For the final workshop presentation, we intend to have
hardware results, where we evaluate similar tasks on a
physical vehicle. The platform will use visual odometry for
localization and a seperate depth camera to build a local-map.

Figure 7 shows the correlation between the obstacle offset
angle and the distance to the obstacle when determining
whether to stop. A linear boundary is formed between stop

Fig. 7: The stop criterion parameters include distance and relative angle
to obstacle. An approximately linear boundary is formed between stop and
no-stop conditions. Red circles represent conditions for which stops were
triggered.

and no-stop scenarios. Some no-stop points lie below the
boundary due to the third velocity factor, because the vehicle
does not stop when it near obstacles at low velocity.

IV. CONCLUSION AND FUTURE WORK

In this work, we presented an imminent collision avoid-
ance system for safe teleoperation in dense environments.
This system revolves around three main ideas. First, a
continuous monitor on the vehicle state and nearby obstacles,
which will trigger a stop if conditions are met. Second,
escape point sampling to select potential goal locations in
free space for the vehicle to stop. Third, a polynomial
trajectoy generator which iterates over escape points to select
a feasibile and collision-free stopping trajectory. The system
can be integrated in an existing teleoperation framework.

Future work can improve upon the stopping condition
heuristic. This work used a KD-tree map representation, but
could be expanded to use other map representations.

REFERENCES
[1] Andr Ferreira and Vassallo Raquel Frizera Bastos Filho Teodiano Freire Sarcinelli

Filho Mrio Pereira, Flvio Garcia. An approach to avoid obstacles in mobile robot
navigation: the tangential escape. Sba: Controle Automao Sociedade Brasileira
de Automatica”. ISSN 0103-1759.

[2] X. Yang, J. Cheng, and N. Michael. An intention guided hierarchical framework
for trajectory-based teleoperation of mobile robots. 2021 IEEE/RSJ International
Conference on Robotics and Automation (ICRA), 2021.

	Introduction
	Method
	Imminent collision checking
	Escape points sampling
	Stopping trajectory generation

	Experiment and Results
	Conclusion and Future Work

