
Assisted Mobile Robot Teleoperation with Intent-aligned Trajectories
via Biased Incremental Action Sampling

Xuning Yang and Nathan Michael

Abstract— We present a method to assist the operator in tele-
operation of mobile robots by generating trajectories such that
the vehicle completes the desired task with ease in unstructured
environments. Traditional assisted teleoperation methods have
focused on reactive methods to avoid collisions, but neglect
the operator’s intention in doing so. Instead, we generate
long horizon, smooth trajectories that follow the operator’s
intended direction while circumventing obstacles for a seamless
teleoperation experience. For mobile robot teleoperation, an
explicit goal in the state space is often unclear in cases such
as exploration or navigation. Therefore, we model the intent
as a direction and encode it as a cost function. As trajectories
of various lengths can satisfy the same directional objective,
we iteratively construct a tree of sequential actions that form
multiple trajectories along the intended direction. We show
our algorithm on a real-time teleoperation task of a simulated
hexarotor vehicle in a dense random forest environment. By
doing so, our approach allows operator to achieve the navigation
task while requiring less effort than reactive methods.

I. INTRODUCTION

Teleoperation of mobile robots is often used in unstruc-
tured environments to achieve a task such as navigation,
exploration, or search and rescue. To assist operators, current
works mitigate collisions by reactively steering the vehicle
away from obstacles using haptic feedback [1] or augmenting
control inputs [2]. These approaches do not take into con-
sideration the operator’s intentions, and require operators to
react fast in environments such as those shown in Fig. 1. In-
stead of pushing the vehicle away from an obstacle that may
be along the operator’s intended path, we propose generating
long horizon smooth trajectories that circumvent obstacles
while following the operator’s intention. The autonomously
generated trajectory reduces the need to engage the operator
at a high frequency in dense environments, which has been
shown to cause fatigue [3].

Generating trajectories that align with the operator’s inten-
tions is a difficult task, as a fixed goal may not be known,
or the operator has a specific trajectory in mind that they
would like to take. In this case, it is prudent to represent
operator’s intent as a direction instead of an explicit goal
in the state space [4]. An example of this is directional
intent objective that corresponds to a “go straight” motion,
as shown in Fig. 2. In this navigation scenario, it is more
likely that the operator want to move forward while avoiding
the obstacle than to crash into the obstacle, even though the
provided input would lead to a crash.

There are a few challenges for this trajectory generation
problem with the intent objective as a cost function: 1) The
intent objective may be optimized with multiple trajectories

The Authors are with the Robotics Institute at Carnegie Mellon Univer-
sity, Pittsburgh PA, 15213, USA {xuning, nmichael}@cmu.edu

Fig. 1: A human-in-the-loop controlled hexarotor being teleoperated in a
densely cluttered environment, with trajectories that follow the directional
intent of the operator while bypassing obstacles in the environment. The
proposed method generates long-horizon, smooth trajectories that enables
operator navigation of mobile vehicles in unstructured environments with
reduced effort, especially in dense environments that require operators to
be vigilant to avoid collisions while focusing on the navigation task.

with varying lengths; 2) the trajectories needs to remain in
a collision-free space while adhering to the intent objective;
and 3) the trajectories needs to be generated without speci-
fying a specific state-space goal.

Therefore, we propose a trajectory generation method,
Biased Incremental Action Sampling (BIAS), that minimize
length-agnostic intent objectives while remaining inside a
nonconvex collision-free space. Instead of sampling states
in the larger state space, the proposed approach iteratively
constructs trajectories by sampling and adaptively increasing
the feasible action space as needed, with the cost function
acting as a bias towards the minimum cost action sequences.
The resulting action sequences are translated into sequential
motion primitives which form a snap-continuous trajectory.

We showcase this approach in a navigation task of a UAV
in a dense random forest as shown in Fig. 1. The contribution
of this paper is a teleoperation framework that, instead
of taking reactive measures to assist the operator from
collisions, assists the operator by generating predictive long
horizon trajectories that align with the operator’s directional
intent while circumventing obstacles. The resulting long-
horizon trajectories enable navigation tasks to be completed
according to operator intent with reduced effort required

ξ1 ξ2

Intended Direction

Fig. 2: This illustration shows two trajectories, ξ1 and ξ2, that both
characterize a “go straight” motion. In this scenario, ξ1 can be achieved by
taking one action (forward), and ξ2 requires at least three actions in order to
successfully avoid the obstacle (forward, right, left). However, the vehicle
will likely end up in a collision state after taking ξ1 with the obstacle. It is
more likely that ξ2 is the intended trajectory that the operator prefers.

from the operator. The proposed approach can run online
up to 10Hz on a CPU in high-density environments.

II. RELATED WORKS

1) Teleoperation: Recent works on assisted teleoperation
of UAVs have focused on methods targeting low level
operator control to ensure safety. Haptic feedback informs
and prevents collisions at the interface level [1, 5, 6]. Low-
level control inputs from the operator are augmented in order
to avoid the immediate obstacles [2, 7]. One-step action
selection allows operator to select a parameterized trajectory
and prunes infeasible actions[8]. These methods are reactive
methods to prevent collisions, but do not consider the task
at hand or the intention of the operator.

2) Motion planning: Given an objective and an environ-
ment, motion planners generate a trajectory using either a
gradient-based optimizer or using sample-based motion plan-
ning. Recent work extends sample-based motion planning
from state lattices to incorporate considerations of dynamics
[9, 10]. Bi-level kinodynamic methods [11] search directly
in the space of discretized higher order derivatives, then
refine the trajectory via optimization [10, 12]. Alternatively,
a solution is to directly sample from the space of trajectories
[9] and output a distribution of parameters that represent the
minimum cost trajectories. All of these methods assume that
a goal or objective is specified in the state-space.

Instead of geometric paths, one can compute motion
primitives on discretized lattice grids for ground [13, 14]
and aerial [15] robots. By concatenating motion primitives,
one can build a tree of trajectories [16], although a naive
tree construction could face combinatorial explosion in the
number of resulting nodes, which can quickly become in-
tractable to evaluate in terms of the number of trajectories.
Monte Carlo Tree Search (MCTS) has been applied in single
and multi-robot motion planning for mobile robots [17, 18].

III. PROBLEM FORMULATION

A motion primitive γ(t) is a parameterized function de-
fined over a time interval t ∈ [0, T] which generates a unique
sequence of states given an initial state x0 ∈ X :

γa,T : [0, T]→ X a ∈ A, T ∈ [0,∞)

where A = Rm is the action or parameter space. A choice
of the motion primitive function is presented in Sect. V-.1.

The parameter space A could be constrained due to safety
or feasibility. For example, the set of parameters that are
dynamically feasible for a mobile robot can be defined as
follows:

Afeas = {a ∈ A | γ(i)a,T (t) ≤ x(i)
max} ∀ t ∈ [0, T] (1)

where the relevant i-th order derivative (e.g., acceleration)
along the trajectory is upper bounded by some known limit
of the vehicle x

(i)
max. The set of parameters that are safe for

a mobile robot can be defined as follows:
Asafe = {a ∈ A | γa,T (t) ∈ Xsafe} ∀ t ∈ [0, T] (2)

where Xsafe = X \O and O is the set of obstacles. Note that
Afeas and Asafe may not be convex spaces.

Define a trajectory to be a sequence of N motion primi-
tives:

ξ = (γ1, . . . , γN) = (γi)
N
i=1 (3)

The duration of the trajectory is given by T =
∑N
i=1 Ti,

where Ti is the duration of the i-th primitive. The trajectory
function is defined as:

ξ(t) = γi(t− τi−1) t ∈ [τi−1, τi)

where τi is the cumulative duration up to primitive i. The
parameters of a trajectory are given by

α = [a1,a2, ...,aN] ∈ Rmn.
For a trajectory to be feasible and safe, the parameters of
each motion primitive must be in the feasible parameter set
ai ∈ Afeas ∩ Asafe, i = 1, ..., N .

A cost function that evaluates a trajectory with respect to
the operator’s directional intent is given as, Ca∗(ξ), where a∗

is the operator’s desired input. The problem statement is then
as follows: Given a∗, find a trajectory ξ that minimizes the
cost function with respect to the parameters of the trajectory
with n-segments in the feasible space:

min
α∈Λfeas∩Λsafe,n

Ca∗ (ξ) n ∈ N+, (4)

where Λ =
∏n
i=1Ai represents the action space of a

trajectory. The action space scales with respect to the number
of segments. The space of all of the number of possible
segments in each trajectory sequence, n, forms a discrete
set; therefore Eq. (4) is a mixed integer program unless n is
fixed by choice.

IV. BIASED INCREMENTAL ACTION SAMPLING (BIAS)
We iteratively build a tree of sequential actions that

minimizes an objective as described in Eq. 4. The algorithm
is detailed in Algorithm 1, and a simplified illustration of
one iteration of the process is shown in Fig. 3.

Starting at the root node, the tree is constructed by
selecting actions via weighted sampling from the Sample Set
S (the set of possible nodes for expansion). For each node
to be expanded, all known feasible actions (successors) are
evaluated, and added to the Sample Set. The set of possible
actions at each step is known a priori: they are generated by
uniformly discretizing1 the continuous action space A along
each parameter dimension. Let the discretized action set of
A be represented by B = {ai}Ki=1; therefore the maximum
branching factor of the tree is K. At each iteration, the
feasibility of an action ai is evaluated by checking Eq. (1)

1Instead of sampling from a uniformly discretized action set, one can
sample from a non-uniform prior over the continuous action space based on
the initial state of the system. Such formulation would allow the samples
to be chosen via an informative prior, and possibly reduce the number of
nodes to be evaluated. We leave this to future work.

0

01 03

01 03

Sample Set

0

01 03

Sample Set
01

0

01 03

033
032

031

01

Sample Set

0

01 03

033
032

01 032 033

Not connected,
but derived fromConnected

Added to the
sample set

Discarded

Tree

Selected for
expansion

Evaluated

Obstacle

Sample Set

(a) (b) (c) (d)
Fig. 3: A simplified illustration of one iteration of the tree generation process (Algorithm 1). (a) The tree contains the root node (0), and two nodes (01,
03) in the sample set. (b) From the sample set, node 03 is selected and added to the tree. (c) The set of possible successors to 03 (031, 032, 033) are
evaluated. (d) From the set of successors, the nodes leading to a collision (031) are discarded, and the others added to the sample set. This process is
repeated until a terminating condition is met.

and (2). In our implementation, safety of each action is
checked with respect to a given map representation, which
is discussed in Sect. VII.

Each node η at depth D represents the sequence of
parameters starting from the root node, i.e. ηD =

(
ad
)d=D
d=0

.
Therefore, the cost function C

(
ηD
)

of a node at depth D
evaluates the sequence of parameters up to ηD. The cost
of each node is used to generate a weighting of the node
such that lower cost nodes maintain a higher likelihood to
be sampled; e.g., w(η) = 1

C(η) .
The Sample Set S is a set of tuples that contains the node

parameters and its associated cost (η, w). At each iteration,
J nodes are sampled from S according to their weights (Line
4). All feasible and safe children of the sampled nodes are
then evaluated and added to the Sample Set (Line 9). As
elements are added, the Sample Set increases exponentially
in size thus causing this set to contain a large number of
lower weighted elements. In order to highlight the higher
weighted elements, the sampling is limited to an elite set
containing the top ρ samples within the Sample Set, and
those weights are passed through a softmax function:

σ(wi) =
eβwi∑N
j=1 e

βwj

β > 0

where β is a tuning parameter. This amplifies the likelihood
of the higher weighted elements being sampled. We introduce
a cost bound C̄ which is updated after every iteration (Line
18). By doing so, this effectively bounds our search to the
first local minima encountered.

V. MOTION PRIMITIVE TREES

A motion primitive tree is generated once a new input is
received from the operator via the joystick, and the lowest
cost trajectory is executed. The resulting tree of actions
generated using BIAS is transformed into a motion prim-
itive tree by computing the appropriate motion primitives
parameterized by the actions and an initial state. Each node

Fig. 4: Vehicle completing an obstacle avoidance maneuver with trajectories
generated using motion primitive trees, shown in the x-y plane. The three
sets of trajectories successfully enable the vehicle to complete the maneuver
according to the intended direction of motion.

η in the tree represents a motion primitive that takes the robot
from one state to another via a time-parameterized trajectory
function γ, generated by our choice of f with action a.
Each successor contains parameters that guarantee a snap-
continuous trajectory from the parent node by construction.
The root node is seeded with the initial state of the system.
Thus, each sequence of nodes η with depth D is an equivalent
representation of trajectory ξ with N segments given γ, with
D = N :

ηD =
(
ad
)d=D
d=0

⇐⇒ ξ = (γi(t))
i=N
i=1

The continuous action space A is the action space of the
motion primitive parameters. A motion primitive library is a
discrete set of motion primitives created using the discretized
action set B: Γ = {γ(ai)}Ki=1, ai ∈ B. The successors to
each node form a motion primitive library with the initial
state as determined by the end state of the current primitive.
An example of the forward-arc motion primitive library is
shown in Fig. 6.

The motion primitive tree becomes a set of trajectories
given an initial condition. The application of this algorithm
to an intent function (described in Sect. VI) enables trajec-
tory generation for a right turning maneuver as shown in
Fig. 4. Each multi-step primitive trajectory, by construction,
naturally becomes an extension of our prior work with one-
step reactive teleoperation [8]: In the worst case where

Algorithm 1: Biased Incremental Action Sampling
Input: Given a cost function C(ξ), a batch sampling

parameter J ∈ N+, and an initial state x0

1 Initialize the Sample Set with the root node: S = {
(
η0, 0

)
}

2 Initialize cost bound C̄ =∞
3 while terminating condition not met do
4 Sample J = min (|S|, J) nodes from S according to

their weights without replacement
5 for each sampled node ηj with depth d, j = 1, ..., J do
6 Add the sampled node ηj to the tree
7 Remove the sampled node from the Sample Set:

S ← S \ {(ηj , wj)}
8 for all a ∈ B do
9 if a ∈ Afeas ∩ Asafe then

10 Generate new node η(a) =
(
ηdj ,a

)
11 Evaluate cost of node C(η)
12 if C(η) < C̄ then
13 Compute weight of node w(η)
14 Add node and its weight to the

Sample Set: S ← (η, w)

15 Optional: Update cost bound: C̄ = maxs∈S C(s)

Fig. 5: Motion primitive trees generated in the x-y plane according to joystick inputs with varying angular velocity in a cluttered environment, showing
effective obstacle avoidance while adhering to the directional intent specified by the operator. All trajectories are smooth and continuous up to snap.

every action downstream from the one-step action set incurs
a higher cost, the algorithm simply returns the one-step
motion primitive library, defaulting to the behavior of one-
step teleoperation where the operator’s selected primitive is
carried out until the next iteration.

1) Forward Arc Motion Primitives: Multirotors are differ-
entially flat systems. Exact inputs can be computed such that
the vehicle follows a specified trajectory in the flat outputs
x, y, z, and yaw θ. Define the state to be x=[x, y, z, θ].
We use forward-arc motion primitives, which generates a
polynomial trajectory in x given an action a. Let a =
[vx, ω, vz, T]>, where vx∈Vx is the linear velocity, ω∈Ω is
the angular velocity, vz∈Vz is the z-velocity, and T∈T is
the duration of the primitive. The action space is therefore
A = Vx × Ω × Vz × T . Note that, instead of selecting a
fixed duration T , we treat it as a parameter. The forward-arc
motion primitives evolves the state following the unicycle
model [14]:

ḟa(t) = [vx cos(ωt) vx sin(ωt) vz ω]>, t ∈ [0, T] (5)
Given an initial state x0 and its higher order derivatives

ẋ0, ẍ0,
...
x0,x

(4)
0 , the motion primitive function γ produces

an eighth order parameterized polynomial with velocity
endpoints constrained according to Eq. (5):

γa,T (t) =

8∑
i=0

cit
i (6)

s.t. γ(j)(0) = x
(j)
0 (tk) for j = 0, 1, 2, 3, 4

γ̇(T) = ḟa(T)

γ(j)(T) = 0 for j = 2, 3, 4

where {·}(j) specifies the jth time derivative.

Fig. 6: Motion Primitive Library constructed with forward arc primitives.
The variations in angular velocity, z velocity, and linear velocity are added
incrementally for maximum clarity.

2) Trajectory selection policy: The existence of many
local minimas will necessarily require us to terminate the
algorithm once a desirable set of trajectories have been gen-
erated. Therefore, the termination criterion can be reaching
a max tree size P ; or until the Sample Set becomes empty.
The algorithm returns a set of trajectories and the vehicle
executes the minimum cost trajectory.

VI. INTENT COST FORMULATION

We present an intent cost function that encodes the desired
direction of motion, which are used to generate motion

primitive trees as shown in Fig. 5. Given a prediction
of the most likely input, a∗, the intent cost function can
be described as follows. The cost function compares an
approximate directional vector between the trajectory ξ(t)
and a one-step motion primitive, generated using the most
optimal action as given by the intent model. Specifically,
the trajectory is evaluated at its end points x0 = ξ(0), and
xT = ξ(T). A one-step motion primitive γ∗ is generated
using a∗ with duration T according to Eq. (6), such that
γ∗(t) = γa∗,T(t). The endpoints generated by the desired
motion primitive would be given by x∗0 = γ(0), and x∗T =
γ(T). The cost function is given as:

Cinputa∗(ξ) = ‖1− p · p∗‖ (7)

p =
xT − x0

|xT − x0|
p∗ =

x∗T − x∗0
|x∗T − x∗0|

(8)

which shifts the dot product such that Cinput ≥ 0 and remains
within [0, 2]. The most likely input a∗ is generated in real-
time by utilizing the prediction framework outlined in [19].

1) User preference and behavior heuristics: We augment
the intent objective with descriptors of trajectory behavior in
order to capture user preference in the qualitative shape of
the trajectory. Trajectory behavior describes how a particular
trajectory is executed. These are adjectives such as slow
vs. fast or smooth vs. aggressive, which are translated to a
value-function that penalizes higher order derivatives such
as velocity, acceleration and jerk. For an (n+1)-segment
trajectory comprised of motion primitives each parameterized
by actions a0,a1, ..., we define and utilize the following
behavior functions:

CStraight =

n∑
i=1

|ωi|+
n∑
i=1

|vzi|

penalizes nonzero curvature

CSmooth =

n∑
i=1

|ai − ai−1|

penalizes changes in curvature

CSpeed =

n∑
i=1

1

‖vi‖2
penalizes trajectory with slow speeds

CDuration =

n∑
i=1

1

Ti

penalizes short duration trajectories

The cost functions are linearly combined with a set of user
selected weights. A visualization of the effect of these cost
functions is shown in Fig. 7.

Fig. 7: Trajectories showing the effects of three behavioral cost functions:
Cstraight (left), Csmooth (middle), and Cduration (right). These show the effect
of each cost function on the shapes of the resulting trajectories. The effect
of Cspeed is omitted as it is not intuitive to visualize in a path.

VII. IMPLEMENTATION

The proposed method is implemented in C++ on a CPU
(Intel Core 2.20GHz i7-8750H CPU), with 16GB of RAM.

Fig. 8: Some resulting odometry using reactive motion primitives based teleoperation and teleoperation using the proposed method in sparse (left), medium
(middle), and dense (right) enviroments for three trials each. The colorbar to the right indicate the pillar heights in meters. Both methods complete
sparse environments equally, however the proposed method results in qualitatively smoother trajectories in the dense scenario. Data from these trials are
summarized in Table V.

12 threads are allocated in order to support parallel evaluation
of the discretized actions (Lines 8 - 17 in Algorithm 1).

We use a global map representation using both a KD-Tree
based voxel representation, as well as a signed distance field
(SDF) representation. KD-Tree is efficient for a local map
representation [8]; However, SDF provide faster queries for
global map since it can be processed offline. 2

VIII. EXPERIMENT AND RESULTS

The proposed method is tested in simulation using a high-
fidelity hexarotor model in various density random forest
environments using a combination of the intent and behavior
cost functions as described in Sect. VI.

Three random forest environments are used in this experi-
ment with varying sparsity, each with size 60m×30m×10m.
The sparse, medium, and dense random tree forest contains
approximately 30, 70, and 120 pillars respectively. The task
is as follows: Navigate the simulated hexarotor vehicle from
one end of the environment to the other. The operator can
choose to take any path they wish to complete the task. The
operator is given a third-person follower view of the vehicle
which is ensured to be occlusion free such that the operator
remains within line-of-sight of the vehicle.

The motion primitive parameters are fixed for all trials
(Table I). The linear velocity is directly controlled by the
operator using one of the axis of the joystick during operation
with the maximum velocity capped at 2m/s. The algorithm-
associated parameters are given in Table II. The simulated
vehicle has a radius of 0.6m with a collision radius set
constant at 0.1m. The discretization size for both KDTree
and SDF is fixed at 0.1m.

1) Timing results: The per-node timing evaluation is
provided in Table III. The cost evaluation per node for
all cost functions averages 0.0168ms. The collision check
time in the densest environment for both SDF and KD-
Tree representations are on the order of 10−3∼10−2ms. The
collision check time should reduce significantly if using a

2The method can be readily adapted to local maps instead of global maps.
Local maps generated using limited range sensors may require limiting the
maximum tree depth, such that the trajectories are within the known map.

TABLE I: Trajectory parameters: The 2D action space includes ω and T ,
and the 3D action space includes ω, T , and vz .

Parameter Min Max Num. discretizations
Duration T 0.2s 1.5s 5
Angular vel. ω 0.75rad/s 0.75rad/s 15
Z vel. vz -0.75m/s 0.75m/s 3
Total size of the motion primitive library 75 (2D), 225 (3D)

TABLE II: Cost parameters for random forest navigation
Cost function weights Sampling Parameters
wsmooth 0.3 Softmax parameter β 0.5
wstraight 0.1 Num. nodes sampled J 2
wduration 0.6 Tree size (Num. nodes P) 100
wspeed 0.3 Elite set size ρ 500
wintent 1.8

local map.
The timing results for the trajectory generation process

are shown in Table IV. Trajectory generation for a 2D
tree takes approximately 113.12ms for an average depth
of 5, and 300ms for a 3D tree with an average depth of
4. Approximately 9785 and 28906 nodes are evaluated to
generate the 2D and 3D tree respectively. To contexualize
our result, note that naively generating a fixed size 2D tree
with depth 5 and 3D tree with depth 4 would result in
755 = 2.373T and 2254 = 2.562B nodes respectively.

2) Task completion results: We compare the proposed
method with respect to the previous reactive, one-step teleop-

TABLE III: Timing results per node (data from 2.4M node evaluations with
the densest random forest environment)

Per node Time
Cost Evaluation 0.0168± 0.0664 ms
Collision Check with SDF 0.00269± 0.00421 ms
Collision Check with KDTree 0.01351± 0.06001 ms
Total with SDF 0.0230± 0.0804 ms
Total with KDTree 0.0320± 0.0694 ms

TABLE IV: Timing and size data per tree (data from 100 trees generated
in the densest random forest environment)

Time 2D (75 children) 3D (225 children)
Generation 113.12± 91.04 ms 299.78± 88.46 ms
Selection 1.14± 0.95 ms 1.73± 7.01 ms
Generation + Selection 116.44± 91.40 ms 315.57± 61.9 ms
Num. nodes processed 9785± 1499 28906± 4584
Num. traj per tree 56± 42 93± 21
Num. iter. per tree 42± 25 61± 16
Average depth of tree 5± 1 4± 1
2D trees refer to motion primitive trees generated in the x-y plane.
3D trees refer to those generated in the euclidean space.

eration proposed in [8]. The reactive method parameterizes
the operator’s control input and generates a single motion
primitive. Both methods are evaluated in the sparse, medium
and dense random forest environments with five trials each.

The key metric we evaluate is the number of joystick
inputs received to complete each task, which represents the
effort of the operator. This metric is critical to evaluating the
operator engagement with the system during teleoperation:
If the number of joystick inputs is high, it indicates that the
operator has to frequently engage the system to control the
vehicle. If the operator does not need to engage as much
with the system as much over time, then this implies that
the vehicle is following the operator’s intended trajectory
and therefore the operator does not feel the need to control
the vehicle. We observe the task completion time as well as
the smoothness of the trajectory via the jerk integral. The
results are reported in Table V. A subset of the resulting
trajectories are shown in Fig. 8.

The number of joystick inputs of each run ranges from
∼44 control inputs for the sparse environment to ∼58 control
inputs for the densest environment. Contrast this to the
reactive method, which utilized ∼192 control inputs for
the sparse case, and up to ∼421 control inputs for the
densest environment. In the sparse enviroment, the operator
has to engage less due to the lack of obstacles. But in the
dense environment, the number of inputs rise significantly
for the reactive method due to the frequent encountering
of obstacles and difficult structures that causes the operator
to be highly engaged. The frequency of engagement is
significantly reduced using the proposed multi-step method,
indicating a reduction in effort required to achieve the same
navigation task. Only 25% control inputs are required for the
sparse environment, and the number of inputs only increased
by around 15-20 for the densest environment. This represents
a significant reduction operator’s effort when navigating
through difficult scenarios such as narrow gaps shown in
the opening figure of the paper (Fig. 1).

Lastly, we observe that the completion time for each of
the tasks are similar. We also observe that the generated
trajectories exhibit a lower jerk profile throughout the task,
which indicates that the proposed method generates smoother
trajectories than the reactive teleoperation method.

IX. CONCLUSION AND FUTURE WORK

We present a method for assisted teleoperation by gen-
erating smooth trajectories that optimize directional intent
objectives by iteratively constructing a tree of sequential ac-
tions. The intent objective is a cost function that describes the

TABLE V: Comparison of the different density enviroments
Approach Sparse Medium Dense

Time to completion (s)
Proposed (multi-step) 39.45± 1.43 36.40± 1.99 37.55± 2.34
Reactive (one-step) 38.84± 1.08 37.06± 0.50 37.95± 1.91

Jerk Integral (m2/s3)
Proposed (multi-step) 18.96± 5.05 25.32± 4.32 33.75± 2.77
Reactive (one-step) 28.41± 2.88 26.72± 4.30 50.14± 7.38

Number of joystick inputs received to complete the trial
Proposed (multi-step) 44± 12 38± 9 58± 10
Reactive (one-step) 192± 27 147± 45 421± 67

intended direction of the operator and behavioral descriptors
that customize the shape of the trajectories. The proposed
method is applied to navigation tasks in sparse, medium and
dense random forest environments. We show a significant
reduction in required operator effort to complete the task
using the proposed method as compared to one-step reactive
teleoperation. We plan to conduct a user study to evaluate
the implications of this approach on user experience as part
of our future work.

The proposed method can be readily extended in a few
ways. First, the method can be extended to dynamic obsta-
cles, since the sequential nature of the trajectory generation
would allow collision checking of each primitive with respect
to time-stamped map representations. Further, other choices
of motion primitive can be used depending on the application
and the vehicle dynamics. Finally, the trajectory generation
process is applicable to other domains where the objective
may not include a state-space goal; e.g., exploration and
search and rescue. We leave these extensions as future work.

REFERENCES
[1] Stefano Stramigioli, Robert Mahony, and Peter Corke. A novel approach to

haptic tele-operation of aerial robot vehicles. In IEEE Int. Conf. on Robot. and
Autom. (ICRA). IEEE, 2010.

[2] Marcin Odelga, Paolo Stegagno, and Heinrich H Bülthoff. Obstacle detection,
tracking and avoidance for a teleoperated uav. In IEEE Int. Conf. on Robot. and
Autom. (ICRA). IEEE, 2016.

[3] Maarten AS Boksem, Theo F Meijman, and Monicque M Lorist. Effects of
mental fatigue on attention: an erp study. Cognitive brain research, 2005.

[4] Xuning Yang, Ayush Agrawal, Koushil Sreenath, and Nathan Michael. Online
adaptive teleoperation via motion primitives for mobile robots. Special Issue on
Learning for Human-Robot Collaboration, Autonomous Robots, 2018.

[5] Xiaolei Hou and Robert Mahony. Dynamic kinesthetic boundary for haptic
teleoperation of aerial robotic vehicles. In IEEE Int. Conf. on Intell. Robots
and Syst. (IROS). IEEE, 2013.

[6] Thanh Mung Lam, Harmen Wigert Boschloo, Max Mulder, and Marinus M
Van Paassen. Artificial force field for haptic feedback in uav teleoperation. IEEE
Trans. on Systems, Man, and Cybernetics, 2009.

[7] Matthias Nieuwenhuisen, David Droeschel, Johannes Schneider, Dirk Holz,
Thomas Läbe, and Sven Behnke. Multimodal obstacle detection and collision
avoidance for micro aerial vehicles. In 2013 European Conference on Mobile
Robots. IEEE, 2013.

[8] Alex Spitzer, Xuning Yang, John Yao, Aditya Dhawale, Kshitij Goel, Mosam
Dabhi, Matt Collins, Curt Boirum, and Nathan Michael. Fast and agile vision-
based flight with teleoperation and collision avoidance on a multirotor. In Int.
Sym. on Exp. Robot. (ISER). Springer, 2018.

[9] Marin Kobilarov. Cross-entropy randomized motion planning. Robotics: Science
and Systems VII, 2012.

[10] Sikang Liu, Nikolay Atanasov, Kartik Mohta, and Vijay Kumar. Search-based
motion planning for quadrotors using linear quadratic minimum time control. In
IEEE Int. Conf. on Intell. Robots and Syst. (IROS). IEEE, 2017.

[11] Dmitri Dolgov, Sebastian Thrun, Michael Montemerlo, and James Diebel. Path
planning for autonomous vehicles in unknown semi-structured environments. Int.
J. Robot. Res., 2010.

[12] Boyu Zhou, Fei Gao, Luqi Wang, Chuhao Liu, and Shaojie Shen. Robust
and efficient quadrotor trajectory generation for fast autonomous flight. IEEE
Robotics and Automation Letters, 2019.

[13] Emilio Frazzoli, Munther A Dahleh, and Eric Feron. Real-time motion planning
for agile autonomous vehicles. Journal of guidance, control, and dynamics, 2002.

[14] Mihail Pivtoraiko, Ross A Knepper, and Alonzo Kelly. Differentially constrained
mobile robot motion planning in state lattices. J. Field Robot., 2009.

[15] Mihail Pivtoraiko, Daniel Mellinger, and Vijay Kumar. Incremental micro-uav
motion replanning for exploring unknown environments. In IEEE Int. Conf. on
Robot. and Autom. (ICRA). IEEE, 2013.

[16] Wennie Tabib, Micah Corah, Nathan Michael, and Red Whittaker. Computation-
ally efficient information-theoretic exploration of pits and caves. In IEEE Int.
Conf. on Intell. Robots and Syst. (IROS). IEEE, 2016.

[17] Mikko Lauri and Risto Ritala. Planning for robotic exploration based on forward
simulation. Robotics and Autonomous Systems, 2016.

[18] Micah Corah and Nathan Michael. Distributed matroid-constrained submodular
maximization for multi-robot exploration: Theory and practice. Autonomous
Robots, 2019.

[19] Xuning Yang, Koushil Sreenath, and Nathan Michael. A framework for efficient
teleoperation via online adaptation. In IEEE Int. Conf. on Robot. and Autom.
(ICRA), 2017.

	Introduction
	Related Works
	Teleoperation
	Motion planning

	Problem Formulation
	Biased Incremental Action Sampling (BIAS)
	Motion Primitive Trees
	Forward Arc Motion Primitives
	Trajectory selection policy

	Intent cost formulation
	User preference and behavior heuristics

	Implementation
	Experiment and Results
	Timing results
	Task completion results

	Conclusion and Future Work

