
Reactive Collision Avoidance using Real-Time Local Gaussian Mixture
Model Maps

Aditya Dhawale, Xuning Yang and Nathan Michael

Abstract— In unknown, cluttered environments, robots re-
quire online real-time mapping and collision checking in order
to navigate robustly. Discrete map representations are inefficient
for collision checking as they are expensive in terms of memory
and computation. This paper takes a probabilistic approach to
local mapping by representing the environment as a Gaussian
Mixture Model (GMM) and leverages its geometric properties
to enable efficient collision checking given a time-parameterized
trajectory. In contrast to current discretization-based methods,
a GMM preserves geometric coverage of the environment
without losing representation accuracy with varying map res-
olutions. We introduce a novel GMM local mapping algorithm
that can be used with a single depth camera processed on
a single CPU, and provide algorithms for collision avoidance
given arbitrary trajectory representations. Finally, we provide
experimentation results demonstrating safety, efficiency, and
data coverage for real-time collision avoidance with a quadrotor
navigating in a cluttered environment.

I. INTRODUCTION

We propose a reactive, online collision checking approach
to enable fast obstacle avoidance in unknown, cluttered
environments. Mobile robots have moved from a paradigm
of operating in well-defined environments to complex and
dynamic environments, and require online, real-time map-
ping and collision checking that can operate at a minimum
of 10Hz. State-of-the-art methods utilize laser range finders,
monocular cameras, and depth cameras to populate a local
map for collision avoidance [1–7]. However, discrete map
representations have significant memory requirements and
are computationally expensive. This work proposes a novel
local map representation that reduces the memory footprint
of the map storage and computational complexity, while
preserving completeness in its representation.

Conventional means of representing maps use discrete
data structures to store raw sensor measurements of the
environment, relying on search efficient data representations
such as KD-Trees or OctoMap [1, 5]. While the simplicity of
fixed size grids allow for uniformity in resolution [4], many
algorithms couple these methods with adaptive grid sizing
[5] to allow data reduction. Such methods discretize space
and encode occupancy leading to resolution dependent model
fidelity and loss of memory efficiency. Instead of processing
local scans, [6–8] limits collision avoidance to the field-of-
view of the sensor over either a single frame [6, 8] or a
sequence of frames [7], thus limiting the range of available
motion to the field-of-view of the sensor. Our approach does
not limit the number of sensor frames, but uses scans based
on locality so as to not limit the range of available motion

The Authors are with the Robotics Institute at Carnegie Mel-
lon University, Pittsburgh PA, 15213, USA {adityand, xuning,
nmichael}@cmu.edu

Fig. 1: A quadrotor navigates a cluttered environment via motion primitive
based teleoperation. The dark red ellipsoids represent the Gaussian mixture
model components that represent a local map (overlayed over a dense voxel
grid representation for visualization). As the quadrotor navigates through
the environment, trajectories that intersect with the Gaussian components
are pruned (red lines) leaving only the safe, feasible trajectories (grey lines).

to only the recently obtained scans.
In this paper, we use a local probabilistic map represen-

tation that scales efficiently with the number of relevant
sensor frames and represent the environment as a continuous
distribution rather than a discrete set of points, and use
this representation to perform reactive collision avoidance.
The local map is represented as a Gaussian Mixture Model
(GMM), which approximates the underlying distribution
from which sensor measurements are sampled and provides
an environment model that scales in fidelity with minimal
information loss [9]. This map representation has been shown
to outperform other representations in state estimation, large
scale high fidelity mapping, and localization [9–13]. Instead
of using a GPU to perform real-time GMM fitting [13],
we use a single depth camera processed on an Intel Core
i7-6700K CPU to generate the local map. We translate a
Gaussian distribution’s probabilistic spread to a geometric
representation for collision checking. Specifically, given a set
of local trajectories, we check trajectories for collision with
the Gaussian components in the local map via intersection
search.

The paper’s contributions are as follows. We present a
novel algorithm for generating local maps using GMMs
and show that the proposed method scales efficiently with
incremental sensor measurements. We take a geometric ap-

proach for computing collisions given the 4Σ-probabilistic
bound of each Gaussian component and a trajectory. We
illustrate the proposed algorithm with motion primitive based
teleoperation [14] to show real-time collision avoidance.
Experimental results of a quadrotor teleoperated through a
cluttered environment with online GMM based local map
generation at > 40Hz (See Section IV-B) results in an aver-
age collision checking time of 0.150 to 0.204 milliseconds
per trajectory, which outperforms collision checks against
discrete world representations.

II. METHODOLOGY

We describe local map representation using a Gaussian
mixture model and provide algorithms for online, real-time
map generation and collision avoidance. We assume that
the state estimates of the vehicle do not drift significantly,
such that errors due to state estimation can be considered
negligible in local map generation and collision avoidance
and leave considerations of inconsistent state estimates as
future work.

A. Map Representation via GMMs

A GMM represents data points using a finite set of Gaus-
sian distributions with unknown parameters. GMM-based
mapping assumes that sensor measurements are sampled
from an underlying continuous distribution, and provides a
probabilistic measure of spatial occupancy at any location
with varying fidelity [9, 13]. For example, scene reconstruc-
tion may require a high fidelity in the map resolution; for
the purpose of collision checking, a lower fidelity map can
be used as the resolution does not change the geometric
coverage of the map (See Section IV-C).

Given a GMM in euclidean space Θ =
{µi,Σi, λi}i=1,...,M , the probability of a point x ∈ R3

being sampled from this distribution is given by

p (x;Θ) =

M∑
i

λiN (x;µi,Σi) , (1)

where λi is the importance weight, µi ∈ R3, Σi ∈ R3×3

is the mean and covariance of the ith Gaussian component
respectively, and M is the total number of Gaussian compo-
nents in the mixture.

B. Local Map

The local mapping framework generates a spatially consis-
tent local map and a reduced local map for collision check-
ing. Since dynamically feasible trajectories often extend past
the current field-of-view of the sensor, it is necessary to
create a local map that encloses the vehicle using all recent
sensor observations. To achieve this, we dynamically select
anchor frames and integrate subsequent sensor measurements
that provide novel information about the environment to
these anchor frames. This allows us to create spatially
consistent maps with minimal information redundancy. Given
a history and current sensor measurements as well as state
estimates, we classify the current sensor frame as a keyframe
KF, subframe SF or a bufferframe BF. Novel information is

Fig. 2: A graphical representation of a local map Li . The vehicle poses are
classified as KF (red), SF (orange) or a BF (brown) based on the euclidean
distance between them. Each SF registers to a KF and a BF is used to be
able to represent dynamic obstacles.

extracted from the current sensor data, to which a GMM is
fitted. According to the type of the frame, the corresponding
GMM is appended to the local map. For collision checking,
a reduced local map that contains the vehicle’s immediate
surroundings is extracted from the current local map.

1) Frame Classification: Each incoming sensor frame is
classified as either a

• KF: An anchor frame to which all the subsequent SFs
and BFs in the local map Li are registered to,

• SF: Sensor frames that provide sufficient novel infor-
mation unobserved in the current map local map Li,

• BF: Sensor frames that are stored only for a single time
step as to accommodate for dynamic obstacles; but do
not get stored in Li

Given the current sensor location in the world frame Twc,
the latest KF location Twk, and the latest SF location Tws,
the current frame Fwc is classified according to a set of
Euclidean distance thresholds, αk, αs and βs, as

Fwc =

KF, if ‖t (∇{Twk,Twc}) ‖ ≥ αk

SF, if ‖t (∇{Tws,Twc}) ‖ ≥ αs

or ‖R (∇{Tws,Twc}) ‖ ≥ βs
BF, otherwise

 (2)

where t(∇{T1,T2}) is the translation between transforms
T1 and T2, and R(∇{T1,T2}) is the change in the heading
of the vehicle between transforms T1 and T2.

2) Determining Novel Sensor Information: Sequential
sensor observations often contain redundant information. To
reduce the information processing, we estimate the subset
of information in each sensor observation that has not been
previously observed, and only learn GMMs Θ over this
subset.

Given a depth image measurement Zc at the current
sensor pose Twc, and a set of depth image measurements
registered to the latest KF {Z0,Z1, . . . ,Zn}, we generate
a sensor measurement hypothesis for the previous sensor
measurement Zn−1 in the current sensor frame using a
pinhole projection operator π:

Pn−1 = π (Zn−1)

∇T = T−1wcTw(n−1)

Zn−1,c = π (∇TPn−1) ,

(3)

where, Zn−1,c denotes the depth image of the previous

Fig. 3: The cth frame (orange) represents the current sensor position and
the image below it represents the corresponding depth image. The (c–1)st

frame (red) represents the previous sensor position and the image below it
represents its corresponding depth image. The projected image is the (c–
1)st image projected in the cth image frame, and the novel image Ẑc is the
discrepancy between the projected image and the current image.

sensor measurement Zn−1 as viewed from current sensor
pose Twc.

The novel sensor observations in the current depth image
Zc is then computed as

Zm(u, v) =

{
0, |Zc(u, v)− Zn−1,c(u, v)| < εd

1, |Zc(u, v)− Zn−1,c(u, v)| ≥ εd
Ẑc = Zc(u, v)� Zm ∀(u, v) ∈ (U,V)

(4)

Where (U,V) denotes the image resolution.
Expectation-Maximization (EM) [15] is used to determine

the GMM parameters Θ. EM assigns correspondence vari-
ables Cij to each data point in the sensor observation, which
encodes the responsibility of the jth Gaussian component in
representing the ith data point. The EM algorithm iteratively
estimates C in the E-step given the current set of GMM
parameters Θ by maximizing the log-likelihood of the sensor
data given the current correspondence C and parameters Θ:

log (Zc,C;Θ) =

N∑
i

J∑
j

Cij

(
log λj + logN

(
Zi

c;µj ,Σj

))
.

(5)
Using the best estimate C, the parameters Θ are refined in
the M-step.

3) Local map fusion: A new local map Li is constructed
when a new KF is spawned. Li consists of the GMM
components fused to the previous KF and the latest KF.
The local map only contains GMM components learned from
a KF or a SF. GMM components learned from a BF are
only stored for the current time step in order to account for
dynamic obstacles.
Li =

{
Θi

1,i−1,Θ
i
2,i−1, ..,Θ

i
j,i−1, ..

}⋃{
Θi

1,Θ
i
2, ..,Θ

i
j , ..
}

(6)
where Θi

j,i−1 represents the jth SF GMM in the (i–1)st

KF transformed in the ith KF and Θi
j represents the jth SF

GMM learned in the ith KF. A graphical representation of
this process is shown in Fig. 2.

4) Reduced Local Map: As the local map Li may be
spatially expansive, we further reduce the size of the map
for collision checking by creating a reduced local map RLi

that encapsulates the vehicle and trajectories. We store the
means of the Gaussian components in the local map in a

(a) (b) (c)

Fig. 4: A simplified 2D view of the proposed collision avoidance algorithm,
illustrated using forward-arc motion primitives. A set of motion primitives
interacting with a local GMM map (in burgundy) with configuration space
inflation (light burgundy) is shown in (a). Each Gaussian component is
reduced to its 4Σ geometric representation for collision checking, via (b)
sampling points along trajectories or (c) creating linear approximations to
the trajectory based on curvature and solving for ellipsoid-line intersections.
Rejected trajectories are shown in red.

KD-Tree, and query an ε-ball around the current pose of the
vehicle. The query radius ε is determined using the maximum
trajectory distance. The Gaussian components Θj’s in the
local map Li that lie inside the ε-ball forms the reduced
local map; i.e., RLi = {Θj : |Θj | < ε, Θj ∈ Li}.

Algorithm 1 Online GMM Local Map Generation

1: for Twb the current sensor location in a consistent frame, Zc the
current depth image, and a query radius ε do

2: Classify current frame according to Eq. (2)
3: Compute the novel information Ẑc according to Eq. (4)
4: Estimate the Gaussian mixture parameters parameters Θ

that best represent Ẑc using Eq. (5)
5: Integrate new Gaussian components into the latest local

map Li via Eq. (6)
6: Store the means of the Gaussian components Θ in a KD-Tree, and

query a reduced local map given ε.
7: end for

C. Trajectory Pruning

We present two ways of computing collisions given a
time-parameterized trajectory and a GMM local map. Each
component in the local map can be spatially represented
by an ellipsoidal representation given a Σ-bound of the
distribution. We leverage this geometric property, and assume
that each component can be represented as an ellipsoid as
given by:

f(x) = (x− µ)>C(x− µ)− 1, (7)
where µ is the center of the ellipsoid, C =
diag(c−21 , c−22 , c−23) and ci are the major axes of the
ellipsoid. We represent the configuration space of the
vehicle by a sphere with radius r centered at the robot’s
geometric center. Then, we transform the local map to
incorporate the configuration space by inflating the major
axes:

f(x) = (x− µ)>D(x− µ)− 1, (8)
where D = diag

(
(c1 + r)−2, (c2 + r)−2, (c3 + r)−2

)
. For

sufficiency, we take the ellipsoid defined by the 4Σ prob-
ability bound of each Gaussian component, which provides
approximately 99.95% Chi-squared probabilistic coverage of
the underlying point density.

Suppose a trajectory is given by x(t) = γ(t), where γ(t)
is a time-parameterized function with t defined over some
interval t ∈ [t0, tf], and x(t) = [x(t), y(t), z(t)]>. Then,

the ellipsoid-trajectory equation becomes:
f(t) = f(x(t)) = (x(t)− µ)>R>DR(x(t)− µ)− 1 (9)

f(t) = (x(t)− µ)>A(x(t)− µ)− 1, (10)
where R ∈ R3×3 is the rotation matrix to transform the
local trajectory into the frame of the mixture component.
An intersection or collision occurs when f(t) ≤ 0.

For arbitrary trajectories x(t), no analytic solutions exist
to Eq. (10) unless x(t) is affine. In the following subsec-
tions, we present two algorithms for collision checking for
arbitrarily complex trajectories and provide a brief discussion
on computational complexities.

1) Sampling based collision checking: Instead of com-
puting an analytic solution to Eq. (10), a simple check
would be to sample points along each trajectory. For M
Gaussian mixture components, N local trajectories, and S
samples per trajectory, the computational complexity would
be O(MNS). This approach is delineated in Algorithm 2.

2) Piecewise affine trajectory approximation: If the tra-
jectory is sufficiently smooth, one can generate piecewise
affine (PWA) approximations to the trajectory using heuris-
tics. For each trajectory, suppose s segments of affine approx-
imations sufficiently approximate the trajectory. Then, over
each segment, the affine approximation xs(t) = ast+bs with
as,bs ∈ R3 and t ∈ [ts−1, ts] can be analytically solved in
the frame of each Gaussian component.

The ellipsoid-line equation using Eq. (8), in the frame of
the gaussian component, can be written as:

f(xs) = (xs)
>D(xs)− 1 (11)

f(t) = (ast+ bs)
>D(ast+ bs)− 1, (12)

Without loss of generality, a trajectory can always be trans-
formed into the frame of the mixture component such that
D is diagonal. Collisions are found via solutions to

0 =

(
a21
c21

+
a22
c22

+
a23
c23

)
t2 + 2

(
a1b1

c21
+
a2b2

c22
+
a3b3

c23

)
t

+

(
b21
c21

+
b22
c22

+
b23
c23
− 1

) (13)

With the assumption that the trajectory does not begin inside
a Gaussian component.

For M components, N trajectories, the number of segm-

Algorithm 2 Collision Checking with GMM Local Map via Sampling

1: Given M Gaussian mixture components, N local trajectories, S
samples per trajectory

2: Discretize time interval [t0, tf] into t = {ti}, i = 1, . . . , S s.t.
ti ∈ [t0, tf]

3: for n = 1 : N trajectories do
4: for m = 1 :M Gaussian components do
5: Obtain the eigenvector matrix Rm, centers µm

6: compute Am = Rm
>DmRm where

Dm = diag
(
(cm1 + r)−2, (cm2 + r)−2, (cm3 + r)−2

)
7: for each t ∈ t do
8: Query point at time t: xs = x(t)
9: if f(xs) = (xs − µm)>Am(xs − µm) ≤ 1 then

10: Reject trajectory and increment
11: end if
12: end for
13: end for
14: end for

ents is dependent on the curvature of the trajectory.
The computation complexity would be O(MNSn), where
Sn ≤ S, n = 1, . . . , N such that the worst case complexity
collapses to that of the sample based approach (with S
samples per trajectory). This approach is delineated in
Algorithm 3. We provide a heuristic for determining number
of segments for motion primitives in Sect. II-D.

Algorithm 3 Collision Checking with GMM Local Map via PWA Trajectory
Approximation

1: Given M Gaussian mixture components, N local trajectories
2: for n = 1 : N trajectories do
3: Heuristically discretize trajectory into Sn segments
4: Compute Sn affine approximations
5: for m = 1 :M Gaussian components do
6: Obtain the eigenvector matrix Rm, centers µm, and

transform x into the frame of the Gaussian mixture
7: for each s = 1 : Sn do
8: Solve Eq. (13) and denote solutions as t∗1,2
9: if t∗1,2 ∈ [ts−1, ts] then

10: Reject trajectory and increment
11: end if
12: end for
13: end for
14: end for

D. Local Trajectories: Motion Primitive Library

An example of a family of local trajectories is a motion
primitive library. Motion primitives are dynamically feasible
local trajectories parameterized by the input space of the
dynamics, which have been shown to be amenable to online
autonomous exploration [16] and teleoperation [14, 17]. This
paper follows [14] and uses forward-arc motion primitives.
These local trajectories are formed by propagating the dy-
namics of a unicycle model with a constant linear velocity
vx, angular velocity ω, and vertical velocity vz for a specified
amount of time, T [18]. A motion primitive γ is generated by
parameterizing a kinematic or dynamic model of the robot
using a single action a, i.e. γ(a), where a = {vx, ω, vz}
representing a combination of the discretized input. The
forward-arc motion primitive is given by the solutions to
the unicycle model:

γ(t) = x(0) +

vx
ω (sin(ωt+ θ)− sin(θ))
vx
ω (cos(θ)− cos(ωt+ θ))

vzt
ωt

 , (14)

where t ∈ [0, T]. The pose of the vehicle at time t is given
by x(t) = [x(t), y(t), z(t), θ(t)]>, and vxt, vzt, and ωt are
the linear and angular velocities of the vehicle at time t in
the body frame, respectively. A motion primitive library is
then given by discretizing the input space, resulting in a set
of local trajectories Γ = {γi(ai)}i=1,...,N where the input
space is defined by {ai}i=1,...,N .

For forward-arc motion primitives, the curvature of the
trajectory is correlated with the angular velocity that is used
to generate the motion primitive. As such, our heuristic for
generating the number of segments is defined as follows:

Sn = d1 + k |ωn|e (15)
where k = 3 is empirically chosen and d·e is the ceiling
operator.

III. IMPLEMENTATION

Fitting GMMs over depth sensor scans in real-time is
costly and requires GPU-accelerated desktops [13]. We
achieve online GMM fitting performance using an Intel i7-
6700K CPU in real-time over each depth scan via down-
sampling and parallelization. First, we downsample each
original (640, 480) resolution depth image using Gaussian
pyramids [19] to a (160, 120) resolution image without loss
of map fidelity or computational efficiency (See Section IV-
C). Second, we exploit the knowledge about the diminishing
support of Gaussian distributions by further partitioning the
depth image into smaller 4 × 5 patches with (32, 30) pixel
resolution, and specify 3 GMM components per patch. This
allows parallel GMM fitting over each independent patch.
Partitioning the continuous sensor data into smaller patches
may break the geometric continuity of the scene along the
patch edges. However, ensuring that > 99.95% coverage of
the scan data points are covered by the GMM representation
is sufficient for collision checking.

(a) (b)

Fig. 5: A visualization of free space around each vehicle vs. configuration
space for example trials with (a) GMM local map with sampling, and (b)
GMM local map with PWA approximations based collision avoidance. The
blue line denotes the pose of the vehicle and the light blue shading denotes
the configuration space of 0.5m.

IV. EXPERIMENTS AND RESULTS

We evaluate our proposed algorithm in simulation in a
cluttered environment as shown in Fig. 6 and compare it to
KD-Tree maps in our local mapping framework approach,
in terms of computational complexity of map generation and
collision checking, and also show that our method provides
safety guarantee of at least the configuration bound.”

Fig. 6: The cluttered environment.1

In the simulation scenario, an operator teleoperates the
vehicle using forward-arc motion primitives [14]. We gen-
erate a library of 155 motion primitives, using 31 linearly

1Available at: https://github.com/vibhavg/simulation environments

spaced angular velocities ω ∈ {−3, 3}rad/s, 5 linearly spaced
vertical velocities vz ∈ {−1, 1}m/s, and limit the vehicle to a
maximum linear velocity of 2m/s. We assume a configuration
radius of 0.5m. The heuristics for frame categorization are:
αk = 1.0m, αs = 0.2m, and βs = 0.2 radians.

A. Safety

Safety is evaluated using the minimum distance of the
vehicle pose to its surroundings. We use a dense pointcloud
representation as a baseline and query the radius of free space
around the vehicle at each iteration. In Fig. 5, two 6-8 minute
example trials are shown. Throughout each trial, the vehicle’s
configuration space, denoted in blue, is contained within the
free space around the vehicle, denoted in grey, indicating that
the vehicle is safe at all times.

B. Efficiency

We analyze timing and memory efficiency of GMM local
maps as compared to KD-Tree local maps. Each KD-Tree
and GMM local map is learned over a downsampled data
set of 19200 data points with an average of 14 frames per
local map, resulting in a maximum of 249600 points per
local map. The KD-Tree local map creates a new KD-Tree
at each iteration using the raw data using a discretization of
0.1m. The GMM local map generates 60 components per
frame, which results in approximately 300 components per
local map. Each reduced local map contains approximately
30–40 components.

We observe that each GMM local map can be generated
in approximately 22.89ms on a single CPU (Fig. 7, Top). To
store the same amount of data, KD-Tree requires approxi-
mately 41.92ms. GMM based local map is agnostic to the
number of frames in the local map; as new components only
need to be appended to the current local map. In contrast, a
new KD-Tree needs to be generated with each new sensor
measurement and scales poorly over increasing amounts of
data.

Collision checking timing analysis averaged over 10000
trajectories is shown in Fig. 7 (Bottom). We observe 0.737ms
for KD-Tree based collision check per trajectory, 0.204ms
for GMM local map with sampling-based collision check
per trajectory, and 0.150ms for GMM local map with PWA
trajectory approximation. Sufficiently representing the local
map using a low number of components (See Section IV-C)
contributes to significant speed-ups over KD-Tree queries.

C. Map Fidelity and Coverage

Given a set of 3D points P and a GMM Θ, the log-
likelihood of the points P having been sampled from the
distribution Θ is given by,

S =

N∑
i

ln

M∑
j

λjN (Pi;µj ,Σj) (16)

We define S as the scan score of the points P. Higher scan
score suggests that the probability of points P having been
sampled from GMM Θ is high.

0

10

20

30

40

50

60

ti
m

e
 (

m
s
)

Local map timing (average of 1000 iterations)

KD Tree
Local Map

Frame
Classification

Novel
Information

GMM
Learning

Reduced
Local
Map

Total
(GMM Local

Map)

GMM Affine GMM Sample KD-Tree
-1

-0.5

0

0.5

1

1.5

2

2.5

ti
m

e
 (

m
s
)

Collision check per trajectory timing (avg of 10000 trajectories)

Fig. 7: Top: Timing analysis for GMM local map generation, averaged
over 1000 local maps containing 249600 points. GMM local map takes
22.89ms to learn, whereas KD-Tree local map would take 41.92ms to
generate. Bottom: Timing analysis for per trajectory collision checking with
samples and PWA trajectory approximations, as compared to using KD-
Tree representations. GMM methods take 0.25ms for collision checking per
trajectory, whereas KD-Tree takes 0.75ms per trajectory. Error bars report
standard deviation of the mean.

We evaluate the loss of information via computing the
score S of a GMM learned over the downsampled data
versus a GMM learned over the full resolution data. For
each point in the full resolution depth image, we compute
the scores from both the GMM learned from a downsampled
data and the full resolution data. As shown in Fig. 9, GMM
learned over the downsampled data achieves similar scores
as the GMM learned over the full data, implying minimal
loss of information. The comparable performance may be
the result of smoothing, as reducing the number of points
reduces high frequency noise in the data, possibly leading the
EM algorithm to more robust GMM representations. These
experiments suggest that uniformly downsampling the depth
image does not cause a significant loss in the map fidelity
thus enabling a substantial increase in the computational
efficiency.

We validate the geometric local map coverage of the
sensor data points by computing the percentage of points
that are within 4Σ distance from the mean of all components.
We empirically evaluate geometric coverage for using 1 to 6
components per patch for several randomized runs. As shown
in Fig. 8, even 2 Gaussian components per patch ensures
> 99.95% coverage.

V. CONCLUSION
We propose a novel real-time framework for collision

avoidance using GMM based local maps generated. We
presented two analytic methods for collision checking given
arbitrary trajectories, leveraging the geometric properties of
Gaussian distribution spread. Such local maps provides an
elegant solution to represent the environment in a continuous
representation, while providing high fidelity information and
reducing memory and computational complexity.

As GMMs provide a continuous representation of the
environment, probabilistic interactions with the world can be
readily accommodated. Future work includes extending the
proposed collision avoidance methodology to accommodate
uncertain state estimates with respect to GMM local map
representations.

1 2 3 4 5 6

Gaussian components per patch

99.4

99.6

99.8

100

D
a

ta
p

o
in

t
c
o

v
e

ra
g

e
 (

%
)

Sensor data coverage

Fig. 8: Geometric coverage of sensor data represented by N number of
Gaussian components per image patch. For all N = 1, . . . , 6, 99.95% of
data lie within 4Σ-probabilistic bound.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Patch

4

5

6

S
c
o

re

Scan score for 20 patches
Original

Downsampled

Fig. 9: Comparison of scan score for a GMM learned over the original full
resolution data, versus a GMM learned over a downsampled data. Scores for
the downsampled GMM perform comparable to the full resolution GMM.
Downsampling reduces the number of points and leads the EM algorithm
to a more robust GMM representation.

REFERENCES
[1] D. Maier, A. Hornung, and M. Bennewitz, “Real-time navigation in 3D envi-

ronments based on depth camera data,” in 2012 12th IEEE-RAS Intl. Conf. on
Humanoid Robots (Humanoids), 2012, pp. 692–697.

[2] L. Matthies, R. Brockers, Y. Kuwata, and S. Weiss, “Stereo vision-based obstacle
avoidance for micro air vehicles using disparity space,” in 2014 IEEE Intl. Conf.
on Robotics and Automation (ICRA), 2014, pp. 3242–3249.

[3] S. Daftry, S. Zeng, A. Khan, D. Dey, N. Melik-Barkhudarov, J. A. Bagnell, and
M. Hebert, “Robust monocular flight in cluttered outdoor environments,” arXiv
preprint arXiv:1604.04779, 2016.

[4] S. Liu, M. Watterson, S. Tang, and V. Kumar, “High speed navigation for
quadrotors with limited onboard sensing,” in 2016 IEEE Intl. Conf. on Robotics
and Automation (ICRA), 2016, pp. 1484–1491.

[5] J. Chen, T. Liu, and S. Shen, “Online generation of collision-free trajectories for
quadrotor flight in unknown cluttered environments,” in 2016 IEEE Intl. Conf.
on Robotics and Automation (ICRA), 2016, pp. 1476–1483.

[6] P. Florence, J. Carter, and R. Tedrake, “Integrated perception and control at high
speed: Evaluating collision avoidance maneuvers without maps,” in Workshop on
the Algorithmic Foundations of Robotics (WAFR), 2016.

[7] P. R. Florence, J. Carter, J. Ware, and R. Tedrake, “Nanomap: Fast, uncertainty-
aware proximity queries with lazy search over local 3d data,” in 2018 IEEE Intl.
Conf. on Robotics and Automation (ICRA), 2018.

[8] B. T. Lopez and J. P. How, “Aggressive 3-D collision avoidance for high-speed
navigation,” in 2017 IEEE Intl. Conf. on Robotics and Automation (ICRA), 2017.

[9] S. Srivastava and N. Michael, “Approximate Continuous Belief Distributions for
Precise Auton. Inspection,” in Proc. of the IEEE Intl. Sym. on Safety, Security
and Rescue Robotics, 2016.

[10] A. Dhawale, K. Shaurya Shankar, and N. Michael, “Fast Monte-Carlo Localiza-
tion on Aerial Vehicles Using Approximate Continuous Belief Representations,”
in The IEEE Conf. on Comp. Vision and Pattern Recognition (CVPR), June 2018.

[11] W. Tabib, C. O’Meadhra, and N. Michael, “On-Manifold GMM Registration,”
IEEE Robotics and Automation Letters, pp. 1–1, 2018.

[12] B. Eckart, K. Kim, A. Troccoli, A. Kelly, and J. Kautz, “MLMD: Maximum
Likelihood Mixture Decoupling for Fast and Accurate Point Cloud Registration,”
in 2015 Intl. Conf. on 3D Vision (3DV), 2015, pp. 241–249.

[13] ——, “Accelerated generative models for 3D point cloud data,” in Proc. of the
IEEE Conf. on Comp. Vision and Pattern Recognition, 2016.

[14] X. Yang, K. Sreenath, and N. Michael, “A Framework for Efficient Teleoperation
via Online Adaptation,” in Proc. of the 2017 IEEE Intl. Conf. on Robotics and
Automation (ICRA), 2017.

[15] C. Bishop, Pattern Recognition and Machine Learning. Springer, 2006.
[16] W. Tabib, M. Corah, N. Michael, and R. Whittaker, “Computationally efficient

information-theoretic exploration of pits and caves,” in Intelligent Robots and
Systems (IROS), 2016 IEEE/RSJ Intl. Conf. on, 2016, pp. 3722–3727.

[17] X. Yang, A. Agrawal, K. Sreenath, and N. Michael, “System-Agnostic Adaptive
Teleoperation for High-Dimensional Systems,” Special Issue on Learning for
Human-Robot Collaboration, Auton. Robots, 2018.

[18] M. Pivtoraiko, I. A. Nesnas, and A. Kelly, “Autonomous robot navigation using
advanced motion primitives,” in Proc. of the IEEE Aerospace Conf., Big Sky,
USA, 2009, pp. 1–7.

[19] E. H. Adelson, C. H. Anderson, J. R. Bergen, P. J. Burt, and J. M. Ogden,
“Pyramid methods in image processing,” RCA engineer, vol. 29, no. 6, pp. 33–
41, 1984.

