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ABSTRACT
We present a task-independent framework that is amenable to long-
duration teleoperation of a mobile robot in an unknown scenario,
using incremental intent models. In particular, we focus on con-
structive teleoperation in performing an unknown task without knowl-
edge of the environment, while allowing user to retain full control
over the set of motions. We evaluate our method on a quadrotor
flying in a lemniscate maneuver as a proof-of-concept experiment,
and show reduced joystick entropy. We conclude with a discussion
regarding our on-going investigation with this framework.
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1. INTRODUCTION
Teleoperation of mobile robots continues to be a superior choice

when operating in an unknown environment, due to hindrances in
computational complexity of goal identification, trajectory plan-
ning and optimization. While humans are efficient at identifying
areas of interest and motion planning, we are imperfect controllers
due to inexperience or fatigue. Assistive teleoperation is widely
addressed in the context of manipulation [1] and wheelchair assis-
tance [2], which assumes an episodic task structure with a termi-
nating goal, as well as the availability of prior knowledge of the en-
vironment and user proficiency. For teleoperation of mobile robots
in long-duration tasks, environment is typically not known a priori,
and the set of goals could be very large and continuous.

In assistive teleoperation, user inputs are typically arbitrated with
a policy that corresponds to some predicted goal or trajectory. These
goal hypotheses are typically constructed over a set of discrete ob-
jects [6, 7], or a set of known trajectories in a fixed environment
[2]. In most scenarios, linear arbitration is most widely used [7, 5,
4], although Bayesian arbitration has also been employed [3]. A
key limitation in these approaches are the inherent assumptions of
the environment and user. Linear arbitration parameters are typi-
cally selected depending on the proficiency of the user, and the set
of goal states are reduced down to a computationally tractable size.

This paper extends the work in [12] and provides a more pre-
cise prediction by building local models for dynamic adaptation
of the user intent over short temporal windows. The following sec-
tions describe our framework for a quadrotor aerial vehicle, and dis-
cusses the results for a proof-of-concept experiment for a quadrotor
completing a lemniscate motion in simulation and in actual flight.
Finally, future work regarding more precise and dynamic adapta-
tion and further experimental validations are outlined.
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Figure 1: Left: System diagram of the proposed adaptive framework. Right: a graph-
ical representation of the algorithm at time 0, 50, and 120 from bottom to top. The
available set of the motion primitive to the user (blue) is sampled based on the inferred
distribution (red) from the underlying dense set of motion primitives (grey).

2. PROPOSED FRAMEWORK
The framework consists of two components: First, system-specific

action space is abstracted into the state space via a dense set of
motion primitives. Then, a belief distribution of the user intent is
inferred over the set of motion primitives. In this work, we as-
sume that the operator is a rational agent that acts as an optimizing
controller, such that an observable reward function is optimized re-
garding the system performance. A belief distribution is generated
over the set of motions using incremental online regression of a
linear reward function. Then, the available set of motions is con-
structed according to the predicted distribution. By construction,
the user retains full control over the motion of the vehicle without
arbitration of inputs, while having fine-grained control over the re-
gion of interest based on prior inputs. An overview of the system
and algorithm is shown in Fig. 1.

2.1 Motion Primitives
We define an action to be a set of discrete input values. For

q input dimensions, an action is denoted as a = {a1, . . . , aq}. A
motion primitive γ(a) is generated by parameterizing the action a.
Set of actions, {ai}, i = 1, . . . ,N, generate a motion primitive library
(MPL), denoted by Γ = {γ(ai)}, i = 1, . . . ,N. The set of MPL is
defined as a motion primitive library collection, which is denoted
by {Γ j}, j = 1, . . . ,M.

For the quadrotor aerial vehicle used in this work, the action
space is composed of linear velocity, angular velocity, and thrust.
Each input dimension is discretized finely to create a sufficiently
dense set of actions. The parameterization of these inputs using a
unicycle model results in a set of forward-arc motion primitives [9].
At each input time, the joystick interface selects a single motion
primitive based on the action input via a selector function, which is
then sent to the vehicle.

2.2 Intent Identification and Adaptation
Inspired by [8], we assume that the user is optimizing a linear

reward function, with a set of qualitatively observable bases that
is naturally optimized by the user. It is assumed that at each time
instant, the user issues an action a that is in some neighborhood of
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Figure 2: Comparison of simulation (top) vs. flight (bottom) results. Odometry (left)
and selected motions (right) for each MPL containing 101 motion primitives. Red:
actual input. Green: low-pass filter input. Blue: mean of predicted distribution with
light blue highlighting upper and lower bounds based on the covariance.

a∗, the optimal action that maximizes the linear reward function Rt:

a? = argmax
a

Rt(γ(a)) ≈ argmax
a

P∑
i

αi
tφ

i
t(γ(a)) (1)

Three hindsight bases φi, i = 1, 2, 3, were chosen to model the re-
ward function. These bases are purely based on user inputs and are
evaluated using a window of past m motion primitives. These are:
smoothness, evaluated as the sum of errors between the successive
inputs; time, which is the inverse of the average linear velocity; and
orthogonality, which penalizes the drastic deviation of γt+1 from a
smooth trajectory from time t − m to t, denoted by γt−m:t.

We employ Locally Weighted Projection Regression (LWPR)
[11] to estimate the reward function R(γt−m:t, γt+1). LWPR is a com-
putationally efficient online method for approximating high dimen-
sional nonlinear functions. However, it’s key for computational
efficiency is that it stores only the sufficient statistics in making in-
cremental updates to the model. While older data can be neglected
using a forgetting factor that decays the sufficient statistic over time
for a single model, we find that a more precise control over the spe-
cific temporal window of data is required. To leverage the speed of
LWPR (O(n)), we keep a queue of k LWPR models. At each input
time, a modelMt is popped off the queue, and a new modelMt+k

is added. Each model in the queue is updated with incoming data.
The prediction p(R̂t |γt−m:t, γt+1) is then generated with modelMt.

The belief distribution over the set of the motion primitive is
constructed as follows. For every motion primitive at time t +1, the
following is computed:

p(γt+1|γt−m:t, R̂t) =
p(R̂t |γt−m:t, γt+1)p(γt+1|γt−m:t)

p(R̂t |γt−m:t)

= η p(R̂t |γt−m:t, γt+1)p(γt+1|γt−m:t)

(2)

where p(R̂|γt−m:t, γt+1) is a distribution over the estimated reward
function of the user, and η is a normalization weight.

The set of the available motion primitive is updated iteratively
according to Eq. 2. At each time instance, we modify the set of
available motion primitives by sampling the set of dense motion
primitives via importance sampling with replacement according to
a weight distribution of wn = p(R̂|γt−m:t, γt+1n) for n = 1, ...,N mo-
tion primitives.

3. EXPERIMENT
We test the proposed framework with a teleoperated quadrotor

performing a lemniscate approximately 5m in length. A single
operator is asked to perform 10 trials in simulation and flight ex-
periments using apparatus shown in Fig. 3. We use an entropy-
based measure, Joystick Steering Entropy (JSE) [10], to evaluate

Figure 3: The quadrotor and joystick used in the experiment and the quadrotor in flight.
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Figure 4: Joystick steering entropy with adaptation, without adaptation and with a
low-pass filter for 10 trials in simulation (left) and in actual flight (right). Trials with
adaptation performs comparatively with a low-pass filter approach. Lower entropy
indicate smoother inputs, thus better.

our method. In addition, we compare our result to a finite impulse
low-pass filter on the raw inputs with a weighting factor of 0.9.
In this experiment, we infer over the angular velocity component
and provide no adaptation for linear velocity and thrust for clarity.
A queue of k = 10 LWPR models is used to construct the belief
distribution, which worked well for this maneuver.

Three trials of the simulation results are shown in Fig. 2. The
graphs show the progression in the joystick inputs over time. The
actual joystick input (red) is compared to the resulting mean of the
prediction (blue) with the covariance (light blue). Smoother in-
puts are observed with adaptation overall, which resulted in final
trajectories (left), performing comparatively with the low-pass fil-
ter (green). JSE comparisons are shown in Fig. 4, which indicate
lower entropy with adaptation than without. We observe that our
method is robust as compared to a low pass filter, but could im-
prove in performance by increasing the precision in prediction.

4. CONCLUSION
In this work, we employed a queued LWPR approach in order to

accommodate slight changes in the intent model, and demonstrated
first results in a lemniscate motion in simulation and flight. We aim
to further demonstrate the efficacy of this method with field testing
of real applications such as exploration, with adaptation introduced
to all multiple input dimensions. Furthermore, we aim to inves-
tigate how our framework performs with more aggressive maneu-
vers, which require a precise method to address changes in intent.
To this end, our next steps include investigating computationally
efficient and precise online regressors for dynamic modeling of in-
tent, given limited data sets.
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